Impact of visibility on traffic Incidents at signalized intersections –a case study in Polish cities

Authors

  • Damian Iwanowicz Department of Road and Transportation Engineering and Geotechnic, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland Author https://orcid.org/0000-0001-5687-6341
  • Radosław Klusek Department of Road and Transportation Engineering and Geotechnic, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland Author https://orcid.org/0000-0001-8812-9578

DOI:

https://doi.org/10.61089/aot2025.njtxqe79

Keywords:

sight distance, signalized intersections, traffic safety, vulnerable road user, drivers' behaviors

Abstract

In urban agglomerations, signalized intersections are common. However, in traffic management, safety-focused strategies are often sacrificed for traffic efficiency by allowing simultaneous multiple conflicting movements. We identified this issue by analyzing the most dangerous signalized intersections in several Polish cities. Our research evaluated whether obstructed sight distances between major and minor traffic streams could be a significant problem at these intersections. To achieve this, we employed existing models of visibility analysis related to stopping sight distance. We determined the key parameter for stopping sight distance based on our vehicle speed studies. Tests were conducted using unmanned aerial vehicles over the intersections in the cities under consideration. Subsequently, we adapted available sight distance models to characterize conflicting streams with simultaneous green signals in a signal phase. We distinguished between major movements, including tram, pedestrian, and cyclist traffic, and minor streams, primarily involving turning vehicle movements at the intersection. Through this approach, we analyzed stopping sight distance and found that in about 60% of the cases studied, the obstructed sight distances led to a higher number of traffic incidents in the areas of conflict between major and minor traffic streams. The overall number of traffic incidents was more than 57% higher in areas with obstructed sight distance conditions, with the worst statistics involving incidents with vulnerable road users. This straightforward approach confirmed the findings of many studies that sight distance is one of the most critical factors influencing traffic safety. Based on our research findings, we recommend implementing safe traffic management strategies at intersections with obstructed sight distances, specifically multi-phase signalization. Additionally, due to the often-necessary compromise in phases involving pedestrian and cyclist traffic, we recommend conducting required sight distance analyses for vehicles turning left or right while conflicting with pedestrian or cyclist streams during a shared signal phase. Given the simplicity of the method, further research is needed to refine the approach, possibly by incorporating a stochastic model.

References

1. Aarts L., van Schagen I. (2006). Driving Speed and the Risk of Road Crashes: A Review. Accident Analysis & Prevention, 2006, 38, 215–224, https://doi.org/10.1016/j.aap.2005.07.004

2. Aczel A.D., Sounderpandian J. (2009). Complete Business Statistics. (7th ed.) McGraw-Hill Education

3. American Association of State Highway and Transportation Officials (1999). Guide for the development of bicycle facilities. Washington D.C.

4. American Association of State Highway and Transportation Officials (2018). A Policy on Geometric Design of Highways and Streets. (7th ed.). Washington, D.C.

5. Anjana S., Anjaneyulu M.V.L.R. (2015). Safety analysis of urban signalized intersections under mixed traffic. Journal of Safety Research, 52, 9-14, https://doi.org/10.1016/j.jsr.2014.11.001

6. Austroads (2023), Guide to Road Design part 4A: Unsignalized and Signalized Intersections. Sidney

7. Barricklow P.A., Jacobson M.J. (2004). Guidelines for using decision sight distance at signalized intersections near vertical curves. Report FHWA/TX-05/0-4084-P2. Department of Transportation, Texas

8. Bauer K.M., Harwood D.W. (1998). Statistical Models of At-Grade Intersection Accidents-Addendum. US Department of Transportation. Federal Highway Administration. Publication No. FHWA-RD-99-094

9. Bąk R., Chodur J., Gaca S., Kieć M., Ostrowski K. (2022). Wytyczne projektowania skrzyżowań drogowych. Część 2: Skrzyżowania zwykłe i skanalizowane (WR-D-31-2). In English: Road intersection design guidelines. Part 2: Regular and sewered intersections. Wzorce i standardy rekomendowane przez Ministra właściwego ds. transportu. Ministerstwo Infrastruktury, Departament Dróg Publicznych, Warszawa

10. Bebyn G., Chmielewski J., Iwanowicz D., Karwasz M., Kempa J., Klusek R., Olenkowicz-Trempała P., Wiśniewski D. (2023). Raport o stanie bezpieczeństwa ruchu drogowego w Bydgoszczy 2020. In English: Report on the state of road safety in Bydgoszcz. Wydawnictwa Uczelniane Politechniki Bydgoskiej

11. Bebyn G., Chmielewski J., Szczuraszek T. (2007). Method for risk assessment on newly-designed and reconstructed elements of municipal road network. Archives of Transport, 19, 3, 13–30

12. Brzeziński A., Jesionkiewicz-Niedzińska K. (2021). Selected issues of designing cycling infrastructure in the aspect of road traffic safety. Roads and Bridges - Drogi i Mosty, 20(1), 75–89, https://doi.org/10.7409/rabdim.021.005

13. Brzeziński A., Jesionkiewicz-Niedzińska K., Rezwow-Mosakowska M., Włodarek P. (2022). Wytyczne projektowania infrastruktury dla rowerów Część 3: Projektowanie przejazdów dla rowerów (WR-D-42-3). In English: Cyclist infrastructure design guidelines. Part 3: Cyclist crossings. Wzorce i standardy rekomendowane przez Ministra właściwego ds. transportu. Ministerstwo Infrastruktury, Departament Dróg Publicznych, Warszawa

14. Budzyński M., Jamroz K., Tomczuk P., Mackun T. (2018). Assessing unsignalised pedestrian crossings. Proceedings of 7th Transport Research Arena TRA 2018, Vienna, Austria, https://doi.org/10.5281/zenodo.1491342

15. Congress S.S.C., Puppala A.J., Banerjee A., Patil U.D. (2021). Identifying hazardous obstructions within an intersection using unmanned aerial data analysis. International Journal of Transportation Science and Technology, 10, 34–48, https://doi.org/10.1016/j.ijtst.2020.05.004

16. CROW (2009). Road safety manual. Record 26. Original Dutch version: October 2008. Netherlands

17. Datta S., Rokade S. Rajput S.P.S. (2022). Unsignalized Intersection Capacity Estimation Through Traffic Rule Re-adjustments Using Agent-Based Cellular Automata Simulations. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Volume 46, 2609–2635, https://doi.org/10.1007/s40996-022-00828-7

18. Easa S.M. (2016). Pedestrian Crossing Sight Distance: Lateral Clearance Guidelines for Roadways. Transportation Research Record: Journal of the Transportation Research Board, Volume 2588, Issue 1, https://doi.org/10.3141/2588-04

19. Eom, M., Kim, BI. (2020). The traffic signal control problem for intersections: a review. European Transport Research Review, 12, 50, https://doi.org/10.1186/s12544-020-00440-8

20. Fu C., Liu H. (2020). Investigating influence factors of traffic violations at signalized intersections using data gathered from traffic enforcement camera. PLoS ONE 15, 3, https://doi.org/10.1371/journal.pone.0229653

21. Fundacja Rozwoju Inżynierii Lądowej (2022). Metoda optymalizacji wyboru rozwiązań inżynieryjnych w zakresie bezpieczeństwa ruchu drogowego w Warszawie. In English: A method for optimizing the selection of engineering solutions in the field of road safety in Warsaw. Zarząd Dróg Miejskich, Warszawa

22. Gaca S., Gobis A., Gumińska L., Jamroz K., Mackun T., Szmagliński J. (2021). Wytyczne projektowania infrastruktury dla pieszych Część 3: Projektowanie przejść dla pieszych (WR-D-41-3). In English: Pedestrian infrastructure design guidelines. Part 3: Pedestrian crossings. Wzorce i standardy rekomendowane przez Ministra właściwego ds. transportu. Ministerstwo Infrastruktury, Departament Dróg Publicznych, Warszawa

23. González-Gómez K., Castro M. (2019). Evaluating Pedestrians’ Safety on Urban Intersections: A Visibility Analysis. Sustainability, 2019, 11, 23, 6630, https://doi.org/10.3390/su11236630

24. González-Gómez K., Castro M. (2020). Analysis of sight distances at urban intersections from a vulnerable users’ approach: A case study. Transportation Research Procedia, 45, 226–233, https://doi.org/10.1016/j.trpro.2020.03.011

25. González-Gómez K., López-Cuervo M.S., Castro M. (2021). Assessment of intersection conflicts between riders and pedestrians using a GIS-based framework and portable LiDAR. GIScience & Remote Sensing, 58, 4, 587–-602, https://doi.org/10.1080/15481603.2021.1920199

26. Gruden C., Otković I.I., Šraml M. (2022). An Eye-Tracking Study on the Effect of Different Signalized Intersection Typologies on Pedestrian Performance. Sustainability, 2022, 14, 4, https://doi.org/10.3390/su14042112

27. Haque Md.M., Ohlhauser A.D., Washington S., Boyle L.N. (2016). Decisions and Actions of Distracted Drivers at the Onset of Yellow Lights. Accident Analysis & Prevention, 96, 290–299, https://doi.org/10.1016/j.aap.2015.03.042

28. Hauer E. (2019). Engineering judgment and road safety. Accident Analysis and Prevention, 129, 180–189, https://doi.org/10.1016/j.aap.2019.04.022

29. Hauer E. (2020). Crash causation and prevention. Accident Analysis and Prevention, 143, 1–13 https://doi.org/10.1016/j.aap.2020.105528

30. Hughesa B.P., Newsteadb S., Anundc A., Shud C.C., Falkmera T. (2015). A review of models relevant to road safety. Accident Analysis and Prevention, 74, 250–270, https://doi.org/10.1016/j.aap.2014.06.003

31. Hussain A., Easa S. (2015). Reliability Analysis of Left-Turn Sight Distance at Signalized Intersections. Journal of Transportation Engineering, 142, 3, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000824

32. Islam S.M., Washington S., Kim J., Haque M. (2022). A comprehensive analysis on the effects of signal strategies, intersection geometry, and traffic operation factors on right-turn crashes at signalised intersections: An application of hierarchical crash frequency model. Accident Analysis & Prevention, 171, https://doi.org/10.1016/j.aap.2022.106663

33. Instytut Transportu Samochodowego (2018). Badania zachowań pieszych i relacji pieszy-kierowca. In English: Research on pedestrian behavior and pedestrian-driver relations. Krajowa Rada Bezpieczeństwa Ruchu Drogowego, Warszawa

34. Instytut Transportu Samochodowego, Heller Consulting (2021). Monitoring zachowań uczestników ruchu drogowego – w wybranych województwach. In English: Monitoring the behavior of road users - in selected voivodeships. Krajowa Rada Bezpieczeństwa Ruchu Drogowego, Warszawa

35. Iwanowicz D. (2023). Audyt Bezpieczeństwa Ruchu Drogowego na wybranych skrzyżowaniach z sygnalizacją świetlną w m.st. Warszawa. In English: Road and Traffic Safety Audit at selected intersections with traffic lights in the capital city of Warsaw. Zarząd Dróg Miejskich, Warszawa

36. Iwanowicz D., Hasiewicz J. (2024). Dylematy interpretacyjne stosowania sygnałów drogowych ze szczególnym uwzględnieniem sygnalizatora S-2 w „bezpiecznym” zarządzaniu ruchem drogowym. In English: Interpretative dilemmas of the use of road signals with particular emphasis on the S-2 signal in “safe” traffic management). Paragraf na Drodze, 1/2024, https://doi.org/10.4467/15053520PnD.24.002.19682

37. Jaździk-Osmólska A., Osmólski G., Szyluk M., Horzela I. (2022). Wycena kosztów wypadków i kolizji drogowych na sieci dróg w Polsce na koniec roku 2021, z wyodrębnieniem średnich kosztów społeczno-ekonomicznych wypadków na transeuropejskiej sieci transportowej. In English: Valuation of the costs of road accidents and collisions on the road network in Poland at the end of 2021, with the separation of average socio-economic costs of accidents on the Trans-European Transport Network. Krajowa Rada Bezpieczeństwa Ruchu Drogowego, Warszawa

38. Jha M.K., Ogallo H.G. (2021). Studying the Dynamic Sight Distance Problem with a Machine Learning Algorithm. Conference Paper in: 2021 Annual TRB Conference, Washington, D.C.

39. Jiang Z., Wang T. (2019). Intergreen Time Calculation Method of Signalized Intersections Based on Safety Reliability Theory: A Monte-Carlo Simulation Approach. Journal of Advanced Transportation 2019, https://doi.org/10.1155/2019/1941405

40. Jin J., Wang W., Wets G., Wang X., Mao Y., Jiang X. (2014). Effect of Restricted Sight on Right-Turn Driver Behavior with Pedestrians at Signalized Intersection. Advances in Mechanical Engineering, 2014, 6, 1–6, https://doi.org/10.1155/2014/565394

41. Jung J., Olsen M.J., Hurwitz D.S., Kashani A.G., Buker K. (2018). 3D virtual intersection sight distance analysis using lidar data. Transportation Research Part C, 86, 563–579, https://doi.org/10.1016/j.trc.2017.12.004

42. Komenda Główna Policji (2023), System Ewidencji Wypadków i Kolizji. Biuro Ruchu Drogowego. In English: Police Headquarters, Accident and Collision Registration System. Biuro Ruchu Drogowego. Warszawa

43. Krishnan, A.M., Marisamynathan, S. (2023). Development of pedestrian crossing behavior and safety index models at signalized intersections under mixed traffic conditions. Innovative Infrastructure Solutions, 8, 209, https://doi.org/10.1007/s41062-023-01183-w

44. Krukowicz T., Firląg K., Sterniczuk E. (2021). Incorrect U-turning of vehicles at intersections with traffic lights. Archives of Transport, 57, 1, 131–145, https://doi.org/10.5604/01.3001.0014.8043

45. Li X., Sun J.Q. (2016). Effects of Vehicle–Pedestrian Interaction and Speed Limit on Traffic Performance of Intersections. Physica A: Statis-tical Mechanics and its Applications 2016, 460, 335–347, https://doi.org/10.1016/j.physa.2016.05.034

46. Li G., Wang Y., Zhu F., Sui X., Wang N., Qu, X., Green, P. (2019). Drivers’ Visual Scanning Behavior at Signalized and Unsignalized Intersections: A Naturalistic Driving Study in China. Journal of Safety Research, 2019, 71, 219–229, https://doi.org/10.1016/j.jsr.2019.09.012

47. Ling H., Wu J. (2004). A study on cyclist behavior at signalized intersections. IEEE Transactions on Intelligent Transportation Systems, 5, 4, https://doi.org/10.1109/TITS.2004.837812

48. Mahyari Z., Koren C., Kieć M., Borosos A. (2021). Sight distance at unsignalized intersections: a comparison of guidelines and requirements for human drivers and autonomous vehicles. Archives of Transport, 59, 3, 7–19, http://doi.org/10.5604/01.3001.0014.9553

49. Mohammadi A., Piccinini G.B., Dozza M. (2023). How do cyclists interact with motorized vehicles at unsignalized intersections? Modeling cyclists’ yielding behavior using naturalistic data. Accident Analysis and Prevention 190, https://doi.org/10.1016/j.aap.2023.107156

50. National Cooperative Highway Research Program (1996). Intersection Sight Distance. Report 383. Transportation Research Broad. National Research Council

51. National Cooperative Highway Research Program (1997). Determination of stopping sight distance. NCHRP Report 400. Transportation Research Board, Washington, D.C.

52. Neufert E. (2012). Architects' Data. (4th ed). Wiley-Blackwell

53. Ni D. (2020). Signalized Intersections. (Chapter: Level of Service of Signalized Intersections). Springer Cham, https://doi.org/10.1007/978-3-030-38549-1

54. Olszewski P., Szagała P., Wolański M., Zielińska A. (2015). Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland. Accident Analysis and Prevention, 84, 83–91, https://doi.org/10.1016/j.aap.2015.08.008

55. Samson C.J.R., Hussain Q., Alhajyaseen W.K.M. (2022). Analysis of Stopping Sight Distance (SDD) Parameters: A Review Study. Procedia Computer Sciences, 201, 126–133, https://doi.org/10.1016/j.procs.2022.03.019

56. Schröter B., Hantschel S., Huber S., Gerike R. (2023). Determinants of bicycle crashes at urban signalized intersections. Journal of Safety Research, 87, 1–42, https://doi.org/10.1016/j.jsr.2023.09.011

57. Song Y., Chitturi M.V., Bremer W.F., Bill A.R. (2022). Review of United States research and guidelines on left turn lane offset: Unsignalized intersections and signalized intersections with permitted left turns. Journal of Traffic and Transportation Engineering (English Edition), 9, 4, 556–570, https://doi.org/10.1016/j.jtte.2021.08.002

58. Surisetty R., Prasad S.S.G. (2014). Estimation of Capacity at Un-Signalized Intersections under Mixed Traffic Flow Conditions. American Journal of Engineering Research, 3, 11, 213–221

59. Sushmitha, R., Kumar, R.L.V.P., Shankar, K.V.R.R., Srikanth S. (2022). Impact of vehicle type on stopping sight distance at signal-controlled intersections in heterogeneous traffic conditions. Innovative Infrastructure Solutions. 7, 364, https://doi.org/10.1007/s41062-022-00963-0

60. Szczuraszek T. eds. (2008). Bezpieczeństwo ruchu miejskiego. In English: Urban Traffic Safety. Wydawnictwa Łączności i Komunikacji, Warszawa

61. Szczuraszek T., Kempa J., Chmielewski J., Iwanowicz D., Karwasz M., Klusek R., Olenkowicz-Trempała P., Wiśniewski D. (2019). Raport o stanie bezpieczeństwa ruchu drogowego w Toruniu 2018. In English: Report on the state of road safety in Torun. Wydawnictwa Uczelniane UTP

62. Szczuraszek T., Klusek R. (2019). Influence on the Type of Intersection on Road Traffic Safety in Poland. Conference paper in: IOP Conference Series-Materials Science and Engineering, 471, 6, 1–9, https://doi.org/10.1088/1757-899X/471/6/062021

63. Tang K., Nakamura H. (2008). Impacts of group-based signal control policy on driver behavior and intersection safety. IATSS Research, 32, 2, 81–94, https://doi.org/10.1016/S0386-1112(14)60211-9

64. The National Academies of Sciences, Engineering, and Medicine (2016). Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis. Transportation Research Board, Washington D.C.

65. Traffic Engineering Council Committee (1998). Design and Safety of Pedestrians Facilities. Institute of Transportation Engineers, Washington D.C.

66. Yan H., Li Y. (2023). A Survey of Generative AI for Intelligent Transportation Systems. arXiv preprint arXiv:2312.08248

67. Yan X., Zhang X., Xue Q. (2018). How does intersection field of view influence driving safety in an emergent situation? Accident Analysis and Prevention, Volume 119, 162–175, https://doi.org/10.1016/j.aap.2018.07.015

68. Yan X., Radwan E. (2007). Effect of restricted sight distances on driver behaviors during unprotected left-turn phase at signalized intersections. Transportation Research Part F, 10, 4, https://doi.org/10.1016/j.trf.2007.01.001

69. Yan X., Radwan E. (2008). Influence of Restricted Sight Distances on Permitted Left-Turn Operation at Signalized Intersections. Journal of Transportation Engineering, 134, 2, https://doi.org/10.1061/(ASCE)0733-947X(2008)134:2(68)

70. Yan X., Radwan E., Birriel E. (2006). Left-turn sight distance models for signalized intersections with different configurations. Advances in Transportation Studies, 10, 21–38

71. Yang Y., Wang Y., Easa S.M., Zheng X. (2022). Analyzing Pedestrian Behavior at Unsignalized Crosswalks from the Drivers’ Perspective: A Qualitative Study. Applied Science, 2022, 12, 8, https://doi.org/10.3390/app12084017

72. Zhao J., Li P., Zhou X. (2016), Capacity Estimation Model for Signalized Intersections under the Impact of Access Point. PLoS ONE, 11, 1, https://doi.org/10.1371/journal.pone.0145989

Downloads

Published

2025-03-30

Data Availability Statement

A short presentation, signaling the research problem, was given at the "Road Safety Congress" in Krakow, March 13-15, 2024.

https://media-prof.pl/kongres-brd_2024.html

Iwanowicz D., „Propozycje analiz widoczności na skrzyżowaniach z sygnalizacją świetlną”

Issue

Section

Original articles

How to Cite

Iwanowicz, D., & Klusek, R. (2025). Impact of visibility on traffic Incidents at signalized intersections –a case study in Polish cities. Archives of Transport, 73(1), 53-78. https://doi.org/10.61089/aot2025.njtxqe79

Share

Most read articles by the same author(s)

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

Similar Articles

1-10 of 286

You may also start an advanced similarity search for this article.

Proactive safety assessment of urban through-roads based on GPS data

Jiri Ambros, Jan Elgner, Veronika Valentova, Radoslaw Bak, Mariusz Kiec (Author)

Elements of perfect order rate research in logistics chains

Ilona JACYNA-GOŁDA, Michał KŁODAWSKI, Konrad LEWCZUK, Marcin ŁAJSZCZAK, Tomasz CHOJNACKI, Teresa...