Elements of the model positioning of aircraft on the apron

Authors

  • Paweł GOŁDA Air force Institute of Technology, Warsaw, Poland Author https://orcid.org/0000-0003-4066-7814
  • Mirosław KOWALSKI Air force Institute of Technology, Warsaw, Poland Author
  • Cezary WASSER Military Air Traffic Service Office of the Polish Armed Forces, Warsaw, Poland Author
  • Paweł DYGNATOWSKI Air force Institute of Technology, Warsaw, Poland Author
  • Aleksander SZPORKA Air force Institute of Technology, Warsaw, Poland Author

DOI:

https://doi.org/10.5604/01.3001.0013.6166

Keywords:

airport, aircraft traffic management, traffic organization, aircraft operation, airport processes, simulation tools

Abstract

The design of airports and the organization of their work requires the recognition of the basic components of the air transport process, consisting of an "aerial" part, including the landing phase and the landing operation itself, as well as take-off, the "ground" part, including the task of taxiing aircraft on apron, ground handling tasks, "terminal" part, including passenger handling tasks. These elements form a cause-and-effect sequence, or a series-parallel structure that determines the quality of services provided by the airport, their efficiency, reliability and price. The article presents the issues of decision support for the operation and maintenance of airport infrastructure and traffic management on the ramp and within the airport, i.e. the operation of allocating aircraft to the gates of "gates" using simulation tools. Aircraft taxiing operations on the tarmac integrate the flight phase (along with its components and its problems, such as arriving and departing sequencing) with the ground handling phase of aircraft and passengers at terminals. The model presented in the article is a single element of a holistic approach to the operation of an airport. The overall model consists of the development of decision models for the organization of aircraft traffic on the apron, algorithms for their solution and the possibility of practical application as a simulation tool for analyzing and assessing aircraft traffic processes in the take-off, taxiing and landing phase. To describe the model, a formal mapping of the structure of the necessary airport elements was proposed. A formal record of boundary conditions and criteria relevant to aircraft allocation processes is presented due to the minimization of travel time of passengers transferring between two aircraft assigned to two different gates. Test results can be used in practice, among others by airspace controllers and airport designers for: analyzing and assessing the possibilities of increasing airport capacity, analyzing and assessing the determination of taxiway lengths, maintaining high safety reserves, etc.

References

Adacher, L., Flamini, M., & Romano, E. (2018). Airport ground movement problem: minimization of delay and pollution emission. IEEE Transactions on Intelligent Transportation Systems, 19(12), 3830-3839.

Behrends, J., & Usher, J. M. (2017). An integrated solution for the aircraft taxi and gate as-signment problems. Cogent Engineering, 4(1), 1413722.

Benlic, U., Burke, E. K., & Woodward, J. R. (2017). Breakout local search for the multi-objective gate allocation problem. Computers & Operations Research, 78, 80-93.

Gołda, P., & Zieja, M. (2014). Czynniki determinujące bezpieczeństwo i harmonogramowanie operacji lotniskowych. Logistyka, 2014(3), 7247-7253.

Izdebski, M., 2018. Modelowanie i analiza problemów decyzyjnych przydziału pojazdów do zadań w zagadnieniach transportowych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

Jacyna, M. (2009). Modelowanie i ocena systemów transportowych, Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

Jacyna, M., Izdebski, M., Szczepański, E., & Gołda, P. (2018). The task assignment of vehicles for a production company. Symmetry, 10(11), 551.

Klodawski, M., Jachimowski, R., Jacyna-Golda, I., & Izdebski, M. (2018). Simulation analysis of order picking efficiency with congestion situations. International Journal of Simulation Modelling, 17(3), 431-443.

Kwasiborska, A., & Malarski, M. (2009). Analiza operacji obsługi naziemnej dla zadania ko-ordynacji ruchu lotniskowego. Prace Naukowe Politechniki Warszawskiej. Seria Transport,71, 113-136.

Leszczyński, J. (1999). Modelowanie systemów i procesów transportowych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

Narciso, M. E., & Piera, M. A. (2015). Robust gate assignment procedures from an airport management perspective. Omega, 50, 82-95.

Sienkiewicz P. (1983). Inżynieria systemów. Wydawnictwo MON.

Sienkiewicz P. (1987). Teoria efektywności systemów. Warszawa: Ossolineum.

Sienkiewicz, P. (1994). Analiza systemowa. Wydawnictwo Bellona.

van Schaijk, O. R., & Visser, H. G. (2017). Robust flight-to-gate assignment using flight presence probabilities. Transportation Plan-ning and Technology, 40(8), 928-945.

Zhang, H. H., Xue, Q. W., & Jiang, Y. (2017). Multi-objective gate assignment based on robustness in hub airports. Advances in Mechanical Engineering, 9(2), 1687814016688588.

Zieja, M., & Gołda, P. (2014). Wybrane aspekty system zarządzania bezpieczeństwem. Logistyka, 2014(4). 2600-2608, 2014.

Zieja, M., Krutkow, A., Iwaniuk, M., & Gołda, P. (2017). Model niezawodności i bezpieczeństwa lotów w systemie utrzymania zdatności do lotu statków powietrznych. Prace Naukowe Politechniki Warszawskiej. Transport. 116, 337-346, 2017.

Downloads

Published

2019-09-30

Issue

Section

Original articles

How to Cite

GOŁDA, P., KOWALSKI, M., WASSER, C., DYGNATOWSKI, P., & SZPORKA, A. (2019). Elements of the model positioning of aircraft on the apron. Archives of Transport, 51(3), 101-108. https://doi.org/10.5604/01.3001.0013.6166

Share

Similar Articles

31-40 of 362

You may also start an advanced similarity search for this article.