Fuzzy logic as a decision-making support tool in planning transport development

Authors

DOI:

https://doi.org/10.5604/01.3001.0015.8154

Keywords:

fuzzy logic, transport planning, development policy, decision support, MCDA

Abstract

Deliberations on transport development indicate that planning is its most significant aspect. One of the key issues in planning is selecting infrastructure projects for completion that will contribute to achieving the development objectives. The important functions of planning, as well as its complexity, indicate the need to use solutions in the decision-making support field. In Poland, in the area of strategic planning of infrastructure development, methods of supporting decision-making aimed at selecting infrastructure projects, taking into account their degree of compliance with strategic goals, are currently not applied comprehensively. The paper aims to address this gap with MCDA solution basing on review of literature combined with the authors’ experience in transport planning. Therefore, authors presented a proposed tool for supporting decision-making in planning transport development on a strategic level. The presented method allows for assessing infrastructure development projects in road and rail transport. Such assessments take into account a number of criteria corresponding to the main development directions, i.e. sustainable development and quality of life. Due to the method of formulating development objectives, it has been decided that it will be advantageous to apply fuzzy logic, which enables using natural language in decision-making support systems. To allow practical application of fuzzy logic, the Fuzzy Logic Toolbox package available in the MATLAB environment has been employed. The developed model contains a structure along with defined linguistic variables reflecting the decision-making criteria; also, it includes membership functions, inference rules as well as assessment results. The paper also defines the algorithm of decision-making support procedure. For verification purposes, the decision support model was applied in several real-life project evaluation cases, including a variety of projects in construction, development, and renovation of rail and road infrastructure. The deliberations de scribed in this paper indicate the usefulness of fuzzy logic for supporting decision-making in planning transport development. It’s beneficial that the defined criteria can be applied in the case of projects in early preparation phase, enabling their practical application. Implementation of the solution in the MATLAB Fuzzy Logic Toolbox enables achieving fast results of the assessment of decision-maker preference level.

References

Araújo, R. M. (2015). Multicriteria classification with TODIM-FSE. Procedia Computer Science, 55, 559-565. https://doi.org/10.1016/j.procs.2015.07.043.

Banae Costa, C., De Corte, J.-M., & Vansnick, J.-C. (2003). Overview of MACBETH multicriteria decision analysis approach. International Journal of Information Technology and Decision Making, 11(2), 359–387.

Barfod, M. B. (2018). Supporting sustainable transport appraisals using stakeholder involvement and MCDA. Transport, 33(4), 1052–1066. https://doi.org/10.3846/TRANSPORT.2018.65 96.

Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B-141-B-164. https://doi.org/10.1287/mnsc.17.4.b141

Beria, P., Maltese, I., & Mariotti, I. (2012). Multicriteria versus Cost Benefit Analysis: A comparative perspective in the assessment of sustainable mobility. European Transport Research Review, 4(3), 137–152. https://doi.org/10.1007/s12544-012-0074-9.

Blagojević, M., Šelmić, M., Macura, D., & Šarac, D. (2013). Determining the number of postal units in the network-Fuzzy approach, Serbia case study. Expert Systems with Applications, 40(10), 4090–4095. https://doi.org/10.1016/j.eswa.2013.01.038.

Bous, G., Fortemps, P., Glineur, F., & Pirlot, M. (2010). ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements. https://doi.org/10.1016/j.ejor.2010.03.009.

Bundesministerium für Verkehr und Digitale Infrastruktur. (2016). Bundesverkehrswegeplan 2030.

Cieśla, M., Sobota, A., & Jacyna, M. (2020). Multi-Criteria decision making process in metropolitan transport means selection based on the sharing mobility idea. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/su12177231

Devore, J. L. (2000). Probability and statistics for engineering and the sciences (5th ed.). Duxbury.

Ehrgott, M. (2005). Multicriteria Optimization. Springer Berlin Heidelberg.

European Commission. (2014). Guide to Cost benefit Analysis of Investment Projects: Economic appraisal tool for Cohesion Policy 2014- 2020. In Publications Office of the European Union (Issue December). https://doi.org/10.2776/97516.

Franz, L. (1990). Integrierte Verkehrsplanung unter Umweltgesichtspunkten : Verkehrsvermeidung, Verkehrsberuhigung, Rückbau und Umbau von Strassen. Expert-Verlag.

Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS). Informatica (Netherlands), 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57.

Gineviĉius, R. (2011). A new determining method for the criteria weights in multicriteria evaluation. International Journal of Information Technology and Decision Making, 10(6), 1067–1095. https://doi.org/10.1142/S0219622011004713

Górecka, D. (2017). BIPOLAR MIX – a method for mixed evaluations and its application to the ranking of European projects. Multi ple Criteria Decision Making, 12, 36–48. https://doi.org/10.22367/mcdm.2017.12.03

Grigoroudis, E., & Siskos, Y. (2002). Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method. European Journal of Operational Research, 143(1), 148–170. https://doi.org/10.1016/S0377-2217(01)00332- 0.

Hamurcu, M., & Eren, T. (2020). Strategic planning based on sustainability for urban transportation: An application to decision-making. Sustainability (Switzerland), 12(9), 3589. https://doi.org/10.3390/SU12093589

Henke, I., Cartenì, A., & Di Francesco, L. (2020). A sustainable evaluation processes for investments in the transport sector: A combined multi-criteria and cos-benefit analysis for a new highway in italy. Sustainability (Switzer land), 12(23), 1–27. https://doi.org/10.3390/su12239854. [20] Hoy, K. N., Solecka, K., & Szarata, A. (2019). The application of the multiple criteria decision aid to assess transport policy measures focusing on innovation. Sustainability (Switzerland), 11(5), 1472. https://doi.org/10.3390/su11051472.

Izdebski, M., & Jacyna, M. (2018). The organization of municipal waste collection: The decision model. Rocznik Ochrona Środowiska, 20(1), 912-933.

Izdebski, M., & Jacyna, M. (2021). An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises. Energies, 14(7), 2004. https://doi.org/10.3390/en14072004.

Jacquet-Lagreze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10(2), 151–164. https://doi.org/10.1016/0377-2217(82)90155-2.

Jacyna, M., & Semenov, I. (2020). Models of vehicle service system supply under information uncertainty. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22(4), 694–704, http://dx.doi.org/10.17531/ein.2020.4.13.

Jacyna, M., & Wasiak, M. (2015). Multicriteria decision support in designing transport systems. Communications in Computer and Information Science, 531, 11–23. https://doi.org/10.1007/978-3-319-24577-5_2.

Jacyna, M., Żochowska, R., Sobota, A., & Wasiak, M. (2021). Scenario Analyses of Exhaust Emissions Reduction through the Introduction of Electric Vehicles into the City. Energies 2021, Vol. 14, Page 2030, 14(7), 2030. https://doi.org/10.3390/EN14072030.

JASPERS. (2014). Niebieska księga - Sektor kolejowy - Infrastruktura kolejowa.

Kalifa, M., Özdemir, A., Özkan, A., & Banar, M. (2022). Application of Multi-Criteria Decision analysis including sustainable indicators for prioritization of public transport system. Integrated Environmental Assessment and Management, 18(1), 25-38. https://doi.org/10.1002/ieam.4486.

Kedia, A. S., Saw, K. B., & Katti, B. K. (2015). Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city. Transport, 30(3), 286–293. https://doi.org/10.3846/16484142.2015.108127 9.

Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step- wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258. https://doi.org/10.3846/jbem.2010.12.

Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 25-44.

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decision-making. Informatica (Netherlands), 29(2), 265–280. https://doi.org/10.15388/Informatica.2018.167.

Komisja Europejska. (2011). Plan utworzenia jednolitego europejskiego obszaru transportu – dążenie do osiągnięcia konkurencyjnego i zasobooszczędnego systemu transportu - biała księga. In Official Journal of the European Union: Vol. KOM(2011).

Komornicki, T., Rosik, P., Stępniak, M., Śleszyński, P., Goliszek, S., Pomianowski, W., & Kowalczyk, K. (2018). Ewaluacja i monitoring zmian dostępności transportowej w Polsce z wykorzystaniem wskaźnika WMDT (Issue July).

Kowalski, M., Izdebski, M., Żak, J., Gołda, P., & Manerowski, J. (2021). Planning and management of aircraft maintenance using a genetic algorithm. Eksploatacja i Niezawodność – Maintenance and Reliability, 23(1), 143-153. http://dx.doi.org/10.17531/ein.2021.1.15

Krylovas, A., Zavadskas, E. K., Kosareva, N., & Dadelo, S. (2014). New KEMIRA method for determining criteria priority and weights in solving MCDM problem. International Journal of Information Technology and Decision Making, 13(6), 1119–1133. https://doi.org/10.1142/S0219622014500825.

Lootsma, F. A. (1992). The Rembrandt system for multi-criteria decision analysis via pairwise comparisons or direct rating. Report 92-05, Faculteit der Technische Wiskunde en Informatica, , Netherlands. Fac., Uni.

Marković, M., Pavlović, N., & Ivić, M. (2011). Fuzzy renewal theory about forecasting mistakes done by a locomotive driver: A serbian railway case study. Transport, 26(4), 403-409. https://doi.org/10.3846/16484142.2011.641183.

Milutinović, J., Marković, D., Stanivuković, B., Švadlenka, L., & Dobrodolac, M. (2020). A model for public postal network reorganization based on dea and fuzzy approach. Transport, 35(4), 401–418. https://doi.org/10.3846/transport.2020.13741.

Ministerstwo Infrastruktury. (2019). Strategia Zrównoważonego Rozwoju Transportu do 2030 roku. https://www.gov.pl/web/infrastruktura/projekt-strategii-zrownowazonego-rozwoju-transportu-do-2030-roku2.

Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method, 123 (2010) (testimony of E. K. Zavadskas, Z. Turskis, & T. Vilutiene). https://doi.org/10.1016/s1644- 9665(12)60141-1

Nassereddine, M., & Eskandari, H. (2017). An integrated MCDM approach to evaluate public transportation systems in Tehran. Transportation Research Part A: Policy and Practice, 106, 427–439. https://doi.org/10.1016/j.tra.2017.10.013.

Nijkamp, P., & Blaas, E. (1994). Impact Assessment and Evaluation in Transportation Planning. Springer Netherlands. https://doi.org/10.1007/978-94-015-8293-3.

Nobakhti, A., Raissi, S., Damghani, K. K., & Soltani, R. (2021). Dynamic reliability assessment of a complex recovery system using fault tree, fuzzy inference and discrete event simulation. Eksploatacja i Niezawodnosc, 23(4), 593– 604. https://doi.org/10.17531/ein.2021.4.1.

Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445– 455. https://doi.org/10.1016/S0377- 2217(03)00020-1.

Ortúzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport. In Modelling Transport. https://doi.org/10.1002/9781119993308.

Papacostas, C. S. (2005). Transportation engineering and planning. Pearson Education South Asia.

Pujadas, P., Pardo-Bosch, F., Aguado-Renter, A., & Aguado, A. (2017). MIVES multi-criteria approach for the evaluation, prioritization, and selection of public investment projects. A case study in the city of Barcelona. Land Use Policy, 64, 29–37. https://doi.org/10.1016/j.landusepol.2017.02.0 14.

Rao, S. (2009). Engineering Optimization: Theory and Practice: Fourth Edition. In Engineering Optimization: Theory and Practice: Fourth Edition. John Wiley and Sons. https://doi.org/10.1002/9780470549124.

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009.

Rosik, P., & Szuster, M. (2008). Rozbudowa infrastruktury transportowej a gospodarka regionów (Wydanie I.). Wydawnictwo Politechniki Poznańskiej.

Roubens, M. (1982). Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research, 10(1), 51–55. https://doi.org/10.1016/0377- 2217(82)90131-X.

Roy, B. (1990). Decision-aid and decision-making. European Journal of Operational Research, 45(2–3), 324–331. https://doi.org/10.1016/0377-2217(90)90196-I.

Saaty, R. W. (2016). Decision making in complex environments, The Analytic Network Process (ANP) for dependence and feedback including a tutorial for the SuperDecisions software and portions of the encyclicon of applications. In Including a Tutorial for the SuperDecisions Software and Portions of the Encyclicon of Applications (Vol. 1).

Saaty, T. L. (1995). Transport planning with multiple criteria: The analytic hierarchy process applications and progress review. Journal of Advanced Transportation, 29(1), 81–126. https://doi.org/10.1002/atr.5670290109.

Schärlig, A. (1985). Décider sur plusieurs critères: panorama de l’aide à la décision multicritère. In Diriger l’entreprise (Issue n 1).

Semenov, I., & Jacyna, M. (2022). p The syn thesis model as a planning tool for effective supply chains resistant to adverse events. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 24(1), 140–152. http://doi.org/10.17531/ein.2022.1.16.

Sobota, A., Żochowska, R., Szczepański, E., & Gołda, P. (2018). The influence of tram tracks on car vehicle speed and noise emission at four approach intersections located on multilane arteries in cities. Journal of Vibroengineering, 20(6), 2453-2468.

Szczepański, E., Żak, J., Jacyna-Gołda, I., & Murawski, J. (2017). Simulation support of freight delivery schedule in urban areas. Proce dia Engineering, 187, 520-525.

The MathWorks Inc. (2021). User’s Guide R2021b. www.mathworks.com.

The study of transport impact on the environ ment with regard to sustainable development, 13 Vibroengineering Procedia 285 (2017). https://doi.org/10.21595/vp.2017.19093

Tsamboulas, D., Yiotis, G. S., & Panou, K. D. (1999). Use of multicriteria methods for assessment of transport projects. Journal of Transportation Engineering, 125(5), 407–414. https://doi.org/10.1061/(ASCE)0733- 947X(1999)125:5(407)

Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: Methods and applications. In Multiple Attribute Decision Making: Methods and Applications. Chapman and Hall/CRC.

Vahdani, B., Zandieh, M., & Tavakkoli-Moghaddam, R. (2011). Two novel FMCDM methods for alternative-fuel buses selection. Applied Mathematical Modelling, 35(3), 1396–1412. https://doi.org/10.1016/j.apm.2010.09.018.

Vansnick, J. C. (1986). On the problem of weights in multiple criteria decision making (the noncompensatory approach). European Journal of Operational Research, 24(2), 288–294. https://doi.org/10.1016/0377-2217(86)90051-2.

Vincke, P. (1992). Multicriteria Decision-aid.

von Staden, J. (2020). Stuttgart 21–eine Rekonstruktion der Proteste : Soziale Bewegungen in Zeiten der Postdemokratie. https://oa2020-de.org/blog/2018/07/31/empfeh lungen_qualit%Ahttps://library.oapen.org/bitstream/20.500.12657/43787/1/external_content.pdf.

Vuchic, V. R. (2005). Urban Transit – Operations Planning and Economics New Jersey: John Wiley & Sons. John Wiley & Sons. https://www.amazon.com/Urban-Transit-Operations-Planning-Economics/dp/0471632651.

Vuchic, V. R. (2017). Transportation for livable cities. In Transportation for Livable Cities (3rd print.). Center for Urban Policy Research. https://doi.org/10.4324/9781351318167.

Wiśniewski, L. (2021). Emisje gazów cieplarnianych z transportu. Miejska polityka transportowa i przestrzenna w obliczu zmian klimatu. ACTA SCIENTIARUM POLONORUM - Architektura Budownictwo, 19(4), 73–88. https://doi.org/10.22630/aspa.2020.19.4.39.

Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501–2519. https://doi.org/10.1108/MD-05-2017-0458.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241- X.

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810.

Zeleny, M. (1976). Attribute-Dynamic Attitude Model (ADAM). Management Science, 23(1), 12–26. https://doi.org/10.1287/mnsc.23.1.12.

Downloads

Published

2022-03-31

Issue

Section

Original articles

How to Cite

Kaczorek, M., & Jacyna, M. (2022). Fuzzy logic as a decision-making support tool in planning transport development. Archives of Transport, 61(1), 51-70. https://doi.org/10.5604/01.3001.0015.8154

Share

Similar Articles

61-70 of 366

You may also start an advanced similarity search for this article.