Sustainable road markings for sustainable urban mobility – selection guidelines based on environmental and durability parameters

Authors

DOI:

https://doi.org/10.61089/aot2025.2bh6h360

Keywords:

cold plastic, service life, microplastic, skid resistance, global warming potential, road safety

Abstract

Proper organisation of road transport path is required for the mobility efficiency, for the comfort of road users, and for safety. Road markings are inexpensive road infrastructure features that make road transport easier and safer; their proper selection is very important. For the use in cities, materials must be durable, provide high-friction surfaces for unprotected road users, and be characterised by minimised emissions of volatile organic compounds, low carbon footprint, and curtailed microplastic and particulate emissions. Enhancement of nighttime visibility is usually less important because of external illumination. Because road markings are deteriorating systems, it is necessary to consider all of these requirements from a long-term perspective that includes multiple renewals. To provide materials selection guidelines, several commonly utilised in Europe types of road markings were compared. Durability was assessed based on field measurements of functional properties and evaluation of erosion (i.e. complete abrasion and removal from the roadway surface that results in the release of microplastics), sometimes extrapolations were necessary. The extent of various types of potential emissions was then assessed and global warming potential was calculated. Several parameters, notably skid resistance, had to be excluded because data was either impossible to quantify or absent; uncertainty in the life cycle assessment calculation that could reach even 30% because of its known fallacies should be noted. The outcome demonstrated that the utilisation of road markings that provided the longest service life was the best choice from the assumed long-term perspective; thus, the claim that ‘sustainability is durability’ was supported for the nth time. Specifically, road markings made with cold plastic can be indicated as the most suitable and sustainable for the use in urban spaces at heavily trafficked areas because of their low propensity to abrasion (hence, minimised microplastic and particulate emissions), intrinsic high skid resistance, low emissions, and low overall carbon footprint.

References

1. Abboud, N., Bowman, B. L. (2002). Cost-and longevity-based scheduling of paint and thermoplastic striping. Transportation Research Record 1794, 55–62, http://dx.doi.org/10.3141/1794-07.

2. Achenbach, H., Diederichs, S. K., Wenker, J. L., Rüter, S. (2016). Environmental product declarations in accordance with EN 15804 and EN 16485—how to account for primary energy of secondary resources?. Environmental Impact Assessment Review 60, 134–138, http://dx.doi.org/10.1016/j.eiar.2016.04.004.

3. Ai, C., Tsai, Y. J. (2016). An automated sign retroreflectivity condition evaluation methodology using mobile LIDAR and computer vision. Transportation Research Part C: Emerging Technologies 63, 96–113, https://doi.org/10.1016/j.trc.2015.12.002.

4. Anderson, D. A., Henry, J. J., Hayhoe, G. F. (1982). Prediction and significance of wet skid resistance of pavement marking materials. Transportation Research Record 893, 27–32.

5. Asdrubali, F., Buratti, C., Moretti, E., D’Alessandro, F., Schiavoni, S. (2013). Assessment of the performance of road markings in urban areas: the outcomes of the CIVITAS Renaissance Project. Open Transportation Journal 7, 7–19.

6. ASTM (1993). ASTM E 303. Standard test method for measuring surface frictional properties using the British pendulum tester. ASTM International: West Conshohocken, Pennsylvania, United States.

7. Austrian Standards Institute (2015). ONR 22441: Richtlinien zur Spezifikation von Bodenmarkierungen und Bodenmarkierungsmaterial [in German]. Österreichisches Normungsinstitut: Wien, Austria.

8. Autelitano, F., Giuliani, F. (2021). Colored bicycle lanes and intersection treatments: international overview and best practices. Journal of Traffic and Transportation Engineering (English Edition) 8(3), 399–420, https://doi.org/10.1016/j.jtte.2021.03.003.

9. Avelar, R. E., Carlson, P. J. (2014). Link between pavement marking retroreflectivity and night crashes on Michigan two-lane highways. Transportation Research Record: Journal of the Transportation Research Board 2404, 59–67, https://doi.org/10.3141/2404-07.

10. Babić, D., Burghardt, T. E., Babić, D. (2015). Application and characteristics of waterborne road marking paint. International Journal for Traffic and Transport Engineering (Belgrade) 5(2), 150–169, https://doi.org/10.7708/ijtte.2015.5(2).06.

11. Babić, D., Fiolić, M., Babić, D., Burghardt, T. E. (2024). Systematic testing of road markings’ retroreflectivity to increase their sustainability through improvement of properties: Croatia case study. Sustainability 16(15), 6653, https://doi.org/10.3390/su16156653.

12. Babić, D., Fiolić, M., Babić, D., Gates, T. (2020). Road markings and their impact on driver behaviour and road safety: a systematic review of current findings. Journal of Advanced Transportation 7843743, https://doi.org/10.1155/2020/7843743.

13. Babić, D., Ščukanec, A., Babić, D., Fiolić, M. (2019). Model for predicting road markings service life. The Baltic Journal of Road and Bridge Engineering 14(3), 341–359, https://doi.org/10.7250/bjrbe.2019-14.447.

14. Bao, J., Hu, X., Peng, C., Duan, J., Lin, Y., Tao, C., Jiang, Y., Li, S. (2024). Advancing INDOT’s friction test program for seamless coverage of system: pavement markings, typical aggregates, color surface treatment, and horizontal curves. Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2024/09, https://doi.org/10.5703/1288284317734. Purdue University: West Lafayette, Indiana, United States.

15. Bao, J., Zhao, H., Jiang, Y., Li, S. (2025). International perspectives on skid resistance requirements for pavement markings: a comprehensive synthesis and analysis. Lubricants 13(1), 29, https://doi.org/10.3390/ lubricants13010029.

16. Biermeier, S., Kemper, D., Burghardt, T. E., Garcia-Hernandez, A. (2025a). Machine detectability of road markings analysed with classical image processing techniques towards demand-oriented road operations for automated vehicles. Journal of Traffic and Transportation Engineering (English Edition) 12(3), 569–586, https://doi.org/10.1016/j.jtte.2024.11.003.

17. Biermeier, S., Kemper, D., García-Hernandez, A. (2025b). Road marking visibility for automated vehicles: machine detectability and maintenance standards. Case Studies in Construction Materials 22, e04430, https://doi.org/10.1016/j.cscm.2025.e04430.

18. Blomqvist, G., Järlskog, I., Gustafsson, M., Polukarova, M., Andersson-Sköld, Y. (2023). Microplastics in snow in urban traffic environments. VTI rapport 1171A. Swedish National Road and Transport Research Institute VTI: Linköping, Sweden.

19. Boudissa, M., Kawanaka, H., Wakabayashi, T. (2024). Quality evaluation of road surface markings with uncertainty aware regression and progressive pretraining. Journal of Advanced Computational Intelligence and Intelligent Informatics 28(3), 634-643, https://doi.org/10.20965/jaciii.2024.p0634.

20. Burghardt, T. E., Pashkevich, A. (2018). Emissions of volatile organic compounds from road marking paints. Atmospheric Environment 193, 153–157, https://doi.org/10.1016/j.atmosenv.2018.08.065.

21. Burghardt T. E., Pashkevich A. (2020). Materials selection for structured horizontal road markings: financial and environmental case studies. European Transport Research Review 12, 11, https://doi.org/10.1186/s12544-020-0397-x.

22. Burghardt, T. E., Pashkevich, A. (2021). Green Public Procurement criteria for road marking materials from insiders’ perspective. Journal of Cleaner Production 298, 126521, https://doi.org/10.1016/j.jclepro.2021.126521.

23. Burghardt, T. E., Pashkevich, A. (2023). Road markings and microplastics – a critical literature review. Transportation Research Part D: Transport and Environment 119, 103740, https://doi.org/10.1016/j.trd.2023.103740.

24. Burghardt, T. E., Pashkevich, A. (2025). Field study of pedestrian crossings deterioration over time: assessment of microplastics emission from road markings. In: McNally, C., Carroll, P., Martinez-Pastor, B., Ghosh, B., Efthymiou, M., Valantasis-Kanellos, N. (eds.), Transport Transitions: Advancing Sustainable and Inclusive Mobility. Proceedings of the 10th TRA Conference, 2024, Dublin, Ireland - Volume 4: Clean Energy Transition, pp. 17–23, https://doi.org/10.1007/978-3-031-95284-5_3. Springer: Cham, Switzerland.

25. Burghardt, T. E., Mosböck, H., Pashkevich, A., Fiolić, M. (2020). Horizontal road markings for human and machine vision. Transportation Research Procedia 48, 3622–3633, https://doi.org/10.1016/j.trpro.2020.08.089.

26. Burghardt, T. E., Babić, D., Pashkevich, A. (2022). Sustainability of thin layer road markings based on their service life. Transportation Research Part D: Transport and Environment 109, 103339, https://doi.org/10.1016/j.trd.2022.103339.

27. Burghardt, T. E., Köck, B., Pashkevich, A., Fasching, A. (2023a). Skid resistance of road markings: literature review and field test results. Drogi i Mosty – Roads and Bridges 22, 141–164, https://doi.org/10.7409/rabdim.023.007.

28. Burghardt, T. E., Pashkevich, A., Piegza, A., Krawiec, A. (2023b). Thermoplastic road markings – description and microplastic pollution estimate in Sweden. Journal of Environmental Management 348, 119183, https://doi.org/10.1016/j.jenvman.2023.119183.

29. Burghardt, T. E., Chistov, O., Reiter, T., Popp, R., Helmreich, B., Wiesinger, F. (2023c). Visibility of flat line and structured road markings for machine vision. Case Studies in Construction Materials 18, e02048, https://doi.org/10.1016/j.cscm.2023.e02048.

30. Burns, D., Hedblom, T., Miller, T. (2007). Modern pavement marking systems: relationship between optics and nighttime visibility. Transportation Research Record: Journal of the Transportation Research Board 2056, 43–51, http://dx.doi.org/10.3141/2056-06.

31. Canitez, F. (2025). Sustainable urban mobility plans (SUMPs): an overview. In: Deveci, F. (ed.), Intelligent Urban Mobility, Decision Support Systems for Sustainable Transportation, pp. 1–16, https://doi.org/10.1016/B978-0-443-34160-1.00011-0.

32. Carlson, P. J., Poorsartep, M. (2017) Enhancing the roadway physical infrastructure for advanced vehicle technologies: a case study in pavement markings for machine vision and a road map toward a better understanding. In: Proceedings of Transportation Research Board 96th Annual Meeting, paper 17-06250; Washington, District of Columbia, the United States, 8–12 January 2017.

33. Cashman, S. A., Moran, K. M., Gaglione, A. G. (2016). Greenhouse gas and energy life cycle assessment of pine chemicals derived from crude tall oil and their substitutes. Journal of Industrial Ecology 20(5), 1108−1121, https://doi.org/10.1111/jiec.12370.

34. Che, E., Olsen, M. J., Parrish, C. E., Jung, J. (2019). Pavement marking retroreflectivity estimation and evaluation using mobile LiDAR data. Photogrammetric Engineering & Remote Sensing 85(8), 573–583; https://doi.org/10.14358/PERS.85.8.573.

35. Chen, J., Li, R., Zhang, Y., Wu, Y., He, H. (2023). Study on the reflective principle and long-term skid resistance of a sustainable hydrophobic hot-melt marking paint. Sustainability 15(13), 9950, https://doi.org/10.3390/su15139950.

36. Chu, L., Guo, W., Fwa, T. F. (2020). Theoretical and practical engineering significance of British pendulum test. International Journal of Pavement Engineering 23(1), https://doi.org/10.1080/10298436.2020.1726351.

37. Coves-Campos, A., Bañón, L., Coves-García, J., Ivorra, S. (2018). In situ study of road marking durability using glass microbeads and antiskid aggregates as drop-on materials. Coatings 8(10), 371, https://doi.org/10.3390/coatings8100371.

38. Cruz, M., Klein, A., Steiner, V. (2016). Sustainability assessment of road marking systems. Transportation Research Procedia 14, 869–875, https://doi.org/10.1016/j.trpro.2016.05.035.

39. de Medeiros, J. F., Duarte Ribeiro, J. L. D., Cortimiglia, M. N. (2014). Success factors for environmentally sustainable product innovation: a systematic literature review. Journal of Cleaner Production 65, 76–86, https://doi.org/10.1016/j.jclepro.2013.08.035.

40. Dorocki, S., Wantuch-Matla, D. (2021). Power two-wheelers as an element of sustainable urban mobility in Europe. Land 10(6), 618, https://doi.org/10.3390/land10060618.

41. dos Santos, É. J., Herrmann, A. B., Prado, S. K., Fantin, E. B., dos Santos, V. W., de Oliveira, A. V. M., Curtius, A. J. (2013). Determination of toxic elements in glass beads used for pavement marking by ICP OES. Microchemical Journal 108, 233–238, https://doi.org/10.1016/j.microc.2012.11.003.

42. DSGS (2022). Microplastic emission from road markings in Germany and Austria, https://dsgs.de/data/CMM_Contents/files/ForsChung-Mitteilungen/MiCroplastiC-Emmission-from-Road-Markings-in-Germany-and-Austria.pdf (accessed 7 December 2022). Deutsche Studiengesellschaft für Straßenmarkierungen e. V.: Bad Sachsa, Germany.

43. European Commission, 2019. Proposal for a Directive of the European Parliament and of The Council amending Directive 2008/96/EC on road infrastructure safety management. COM(2018) 274 final, 2018/0129 (COD), https://ec.europa.eu/transport/sites/transport/files/3rd-mobility-pack/com20180274-proposal_en.pdf (accessed 22 May 2018). European Commission: Brussels, Belgium.

44. European Committee for Standardization (2011a). European Standard EN 13197. Road marking materials – Wear simulator turntable. European Committee for Standardization: Brussels, Belgium.

45. European Committee for Standardization (2011b). European Standard EN 13036-4. Road and airfield surface characteristics – test methods – part 4: method for measurement of slip/skid resistance of a surface – the pendulum test. European Committee for Standardization: Brussels, Belgium.

46. European Committee for Standardization (2012). European Standard EN 1423. Road marking materials – drop on materials – glass beads, antiskid aggregates and mixtures of the two. European Committee for Standardization: Brussels, Belgium.

47. European Committee for Standardization (2018). European Standard EN 1436. Road marking materials — road marking performance for road users and test methods. European Committee for Standardization: Brussels, Belgium.

48. European Committee for Standardization (2020a). European Standard EN 1824. Road marking materials – road trials. European Committee for Standardization: Brussels, Belgium.

49. European Committee for Standardization (2020b). European Standard EN 1871. Road marking materials – paint, thermoplastic and cold plastic materials – physical properties. European Committee for Standardization: Brussels, Belgium.

50. European Committee for Standardization (2021). European Standard EN 15804. sustainability of construction works - environmental product declarations - core rules for the product category of construction products. European Committee for Standardization: Brussels, Belgium.

51. European Parliament (2004). Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. Official Journal of the European Union L 143/42, 87–96, http://data.europa.eu/eli/dir/2004/42/oj.

52. Fiolić, M., Habuzin, I., Dijanić, H., Sokol, H. (2017). The influence of drying of the road marking materials on traffic during the application of markings. In: Proceedings of ZIRP-LST Conference, pp. 109–118; Opatija, Croatia, 1–2 June 2017.

53. Formosa, N., Quddus, M., Man, C. K., Singh, M. K., Morton, C., Masera, C. B. (2024). Evaluating the impact of lane marking quality on the operation of autonomous vehicles. Journal of Transportation Engineering, Part A: Systems 150(1), 04023126, https://doi.org/10.1061/JTEPBS.TEENG-7688.

54. Fukuzaki, N., Yanaka, T., Urushiyama, Y. (1986). Effects of studded tires on roadside airborne dust pollution in Niigata, Japan. Atmospheric Environment (1967) 20(2), 377–386, https://doi.org/10.1016/0004-6981(86)90041-7.

55. Fwa, T. F. (2017). Skid resistance determination for pavement management and wet-weather road safety. International Journal of Transportation Science and Technology 6(3), 217-227, http://dx.doi.org/10.1016/j.ijtst.2017.08.001.

56. Gadžo, E., Mujić, A., Lindov, O. (2024). Sump indicators in focus–investigating modal distribution in urban mobility research. Пут и саобраћај – Journal of Road and Traffic Engineering 70(1), 19–22, https://doi.org/10.31075/PIS.70.01.04.

57. George, C., Beeldens, A., Barmpas, F., Doussin, J. F., Manganelli, G., Herrmann, H., Kleffmann, J., Mellouki, A. (2016). Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science and Engineering 10(5), 2, https://doi.org/10.1007/s11783-016-0834-1.

58. Guan, Y., Hu, J., Wang, R., Cao, Q., Xie, F. (2024). Research on the nighttime visibility of white pavement markings. Heliyon 10, e36533, https://doi.org/10.1016/j.heliyon.2024.e36533.

59. Guo W., Chu L., Fwa T. F. (2020). Evaluation of calibration procedures of British pendulum tester. Journal of Testing and Evaluation 49, 3, 1729–1746, https://doi.org/10.1520/JTE20200288.

60. Hamilton-Baillie, B. (2008). Shared space: reconciling people, places and traffic. Built Environment 34(2), 161–181, https://doi.org/10.2148/benv.34.2.161.

61. Hansa, J., Merzenich, H., Ortolano, L. C., Klug, S. J., Blettner, M., Gianicolo, E. (2023). Health risks of titanium dioxide (TiO₂) dust exposure in occupational settings – a scoping review. International Journal of Hygiene and Environmental Health 252, 114212, https://doi.org/10.1016/j.ijheh.2023.114212.

62. Harlow, A. (2005). Skid resistance and pavement marking materials. At: International Surface Friction Conference: Roads and Runways: Improving Safety Through Assessment and Design; Christchurch, New Zealand, 1–4 May 2005.

63. Hartl, R., Harms, P., Egermann, M. (2024). Towards transformation-oriented planning: what can sustainable urban mobility planning (SUMP) learn from transition management (TM)?. Transport Reviews 44(1), 167–190, https://doi.org/10.1080/01441647.2023.2239497.

64. Hippi, M., Kangas, M. (2022). Impact of weather on pedestrians’ slip risk. International Journal of Environmental Research and Public Health 19(5), 3007, https://doi.org/10.3390/ijerph19053007.

65. Hiti, M., Ducman, V. (2014). Analysis of the slider force calibration procedure for the British Pendulum Skid Resistance Tester. Measurement Science and Technology 25(2), 025013, https://doi.org/10.1088/0957-0233/25/2/025013.

66. Hunger, K. (2005). Toxicology and toxicological testing of colorants. Review of Progress in Coloration and Related Topics 35(1), 76–89, https://doi.org/10.1111/j.1478-4408.2005.tb00161.x.

67. Itoya, E., Ison, S. G., Frost, M. W., El-Hamalawi, A., Hazell, K. (2013). Highway routine maintenance carbon dioxide emissions assessment. Proceedings of the Institution of Civil Engineers - Engineering Sustainability 166(4), 165–180, https://doi.org/10.1680/ensu.11.00035.

68. Jia, G., Tabandeh, A., Gardoni, P. (2017). Life-cycle analysis of engineering systems: modeling deterioration, instantaneous reliability, and resilience. In: Gardoni, P. (ed.), Risk and Reliability Analysis: Theory and Applications, pp. 465–494, https://doi.org/10.1007/978-3-319-52425-2_20. Springer: Cham, Switzerland.

69. Karim, M., Chyc-Cies, J., Hartman, B., Schick, D., Dechkoff, C. (2012). Evaluation of a skid resistant material at high incident intersection locations. In: “Giving the Edge to Pedestrians” Conference of the Transportation Association of Canada; Fredericton, New Brunswick, Canada, 14–17 October 2012.

70. Karimzadeh, A., Shoghli, O. (2020). Predictive analytics for roadway maintenance: a review of current models, challenges, and opportunities. Civil Engineering Journal 6(3), 602–625, https://doi.org/10.28991/cej-2020-03091495.

71. Keppler, R. (2005). 15 Jahre Eignungsprüfungen von Markierungssystemen auf der Rundlaufprüfanlage der Bundesanstalt für Straßenwesen [in German]. Straßenverkehrstechnik 49(11), 575–582.

72. Konradsen, F., Hansen, K. S. H., Ghose, A., Pizzol, M. (2024). Same product, different score: how methodological differences affect EPD results. The International Journal of Life Cycle Assessment 29(2), 291–307, https://doi.org/10.1007/s11367-023-02246-x.

73. Kornalewski, L., Kowalska-Sudyka, M., Ledwolorz, A. (2020). Proposal of post evaluation methodology for the impact of a new road investment project on road safety. Roads and Bridges – Drogi i Mosty 19(3), 183–197, https://doi.org/10.7409/rabdim.020.012.

74. Lammers, E., Staats, W., Agent, K., (2021). Evaluation of orange pavement striping for use in work zones. Report KTC-21-03/FRT-227-1F, https://doi.org/10.13023/ktc.rr.2021.03. University of Kentucky: Lexington, Kentucky, United States.

75. Laurinavičius, A., Skerys, K., Jasiūnienė, V., Pakalnis, A., Starevičius, M. (2009). Analysis and evaluation of the effect of studded tyres on road pavement and environment (I). The Baltic Journal of Road and Bridge Engineering 4(3), 115–122, https://doi.org/10.3846/1822-427X.2009.4.115-122.

76. Le, H. Q., Tomenson, J. A., Warheit, D. B., Fryzek, J. P., Golden, A. P., Ellis, E. D. (2018). A review and meta-analysis of occupational titanium dioxide exposure and lung cancer mortality. Journal of Occupational and Environmental Medicine 60(7), e356–e367, https://doi.org/10.1097/JOM.0000000000001314.

77. Lee, H.-S., Oh, H.-U. (2005). Minimum retroreflectivity for pavement markings by driver's static test response. Journal of the Eastern Asia Society for Transportation Studies 6, 1089–1099, http://dx.doi.org/10.11175/easts.6.1089.

78. Liandrat, S., Ferreira-Fernandes, M., Godelle, J., Lallement, S., Muzet, V. (2024). Road markings detection algorithm evaluation within fog and rain conditions. In: Shafik, M. (ed.), Emerging Cutting-Edge Applied Research and Development in Intelligent Traffic and Transportation Systems, pp. 112–122, https://doi.org/10.3233/ATDE241186. IOS Press.

79. Lima Jr., O., Segundo, I. R., Mazzoni, L. N., Freitas, E., Carneiro, J. (2024). Improving the road safety and the service life of road markings through self-cleaning ability. In: Nikolaides, A. F., Manthos, E. (eds.), Bituminous Mixtures and Pavements VIII, pp. 673–680, https://doi.org/10.1201/9781003402541. CRC Press.

80. Lin, H., Chen, F., Zhang, H. (2023). Active luminous road markings: a comprehensive review of technologies, materials, and challenges. Construction and Building Materials 363, 129811, https://doi.org/10.1016/j.conbuildmat.2022.129811.

81. Luecken, D. J., Mebust, M. R. (2008). Technical challenges involved in implementation of VOC reactivity-based control of ozone. Environmental Science & Technology 42(5), 1615–1622, http://dx.doi.org/10.1021/es071036v.

82. Lugović-Mihić, L., Filija, E., Varga, V., Premuž, L., Parać, E., Tomašević, R., Barac, E., Špiljak, B. (2024). Unwanted skin reactions to acrylates: an update. Cosmetics 11(4), 127, https://doi.org/10.3390/cosmetics11040127.

83. Lundberg, J., Janhäll, S., Gustafsson, M., Erlingsson, S. (2021). Calibration of the Swedish studded tyre abrasion wear prediction model with implication for the NORTRIP road dust emission model. International Journal of Pavement Engineering 22(4), 432–446, https://doi.org/10.1080/10298436.2019.1614585.

84. Markiewicz, A., Björklund, K., Eriksson, E., Kalmykova, Y., Strömvall, A. M., Siopi, A. (2017). Emissions of organic pollutants from traffic and roads: priority pollutants selection and substance flow analysis. Science of the Total Environment 580, 1162–1174, https://doi.org/10.1016/j.scitotenv.2016.12.074.

85. Marsh, E., Hattam, L., Allen, S. (2025). Stochastic error propagation with independent probability distributions in LCA does not preserve mass balances and leads to unusable product compositions—a first quantification. The International Journal of Life Cycle Assessment 30(2), 221–234, https://doi.org/10.1007/s11367-024-02380-0.

86. Marti, E., de Miguel, M. A., Garcia, F., Perez, J. (2019). A review of sensor technologies for perception in automated driving. IEEE Intelligent Transportation Systems Magazine 11(4), 94–108, https://doi.org/10.1109/MITS.2019.2907630.

87. Mavlutova, I., Atstaja, D., Grasis, J., Kuzmina, J., Uvarova, I., Roga, D. (2023). Urban transportation concept and sustainable urban mobility in smart cities: a review. Energies 16(8), 3585, https://doi.org/10.3390/en16083585.

88. Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., Michalik, A. (2022). Abundance and fate of glass microspheres in river sediments and roadside soils: lessons from the Świętokrzyskie region case study (south-central Poland). Science of the Total Environment 821, 153410, https://doi.org/10.1016/j.scitotenv.2022.153410.

89. Miller, T. R. (1992). Benefit–cost analysis of lane marking. Transportation Research Record 1334, 38–45.

90. Mirabedini, S. M., Zareanshahraki, F., Mannari, V. (2020). Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Progress in Organic Coatings 139, 105454, https://doi.org/10.1016/j.porgcoat.2019.105454.

91. Mohamed, M., Abdel-Rahim, A., Kassem, E., Chang, K., McDonald, A. G. (2020). Laboratory-based evaluation of pavement marking characteristics. Journal of Transportation Engineering, Part B: Pavements 146(2), 04020016. doi:10.1061/jpeodx.0000168.

92. Nicholls, J. C., Schoen, E., van Vliet, D., Mookhoek, S., Meinen, N., De Visscher, J., Vanelstraete, A., Blumenfeld, T., Böhm, S., Jacobs, M. M. J., van Bochove, G. G., Hammoum, F., Schulze, C. (2019). Development of a ravelling test for asphalt. In: Nikolaides, A. F., Manthos, E. (eds.), Bituminous Mixtures and Pavements VII. Proceedings of the 7th International Conference 'Bituminous Mixtures and Pavements', pp. 144–152, https://doi.org/10.1201/9781351063265. CRC Press.

93. O'Shea, M. J., Vigliaturo, R., Choi, J. K., McKeon, T. P., Krekeler, M. P., Gieré, R. (2021). Alteration of yellow traffic paint in simulated environmental and biological fluids. Science of the Total Environment 750, 141202, https://doi.org/10.1016/j.scitotenv.2020.141202.

94. Park, E. S., Carlson, P. J., Pike, A. (2019). Safety effects of wet-weather pavement markings. Accident Analysis & Prevention 133, 105271, https://doi.org/10.1016/j.aap.2019.105271.

95. Pasetto, M., Barbati, S. D. (2013). Experimental investigation on road marking distress evolution: beyond testing, quality assurance and maintenance improvement. Advanced Materials Research 723, 846–853, https://doi.org/10.4028/www.scientific.net/AMR.723.846.

96. Pasetto, M., Manganaro, A. (2008). Study on the effect of surface texture saturation of road pavements with drop on road markings. At: International Safer Roads Conference; Cheltenham, the United Kingdom, 11–14 May 2008.

97. Pike, A. M.; Bommanayakanahalli, B. (2018). Development of a pavement marking life cycle cost tool. In: Proceedings of Transportation Research Board 97th Annual Meeting, paper 18-1533; Washington, District of Columbia, the United States, 7–11 January 2018.

98. Pocock, B. W., Rhodes, C. C. (1952). Principles of glass-bead reflectorization. Highway Research Board Bulletin 57, 32–48.

99. Rathnaweera, S. S., Vik, E. A., Manamperuma, L. D., Åstebøl, S. O., Vollertsen, J., Heier, L. S., Kronvall, K. W. (2023). Study of traffic-related pollution and its treatment with a particular focus on microplastics in tunnel wash and road runoff water. Water Science & Technology 88(4), 874–884, https://doi.org/10.2166/wst.2023.232.

100. Riebeling, C., Haase, A., Tralau, T., Luch, A. (2020). Substance classification of titanium dioxide illustrates limitations of EU legislation. Nature Food 1(9), 523–525, https://doi.org/10.1038/s43016-020-00149-w.

101. Riley, P., Regan, P. J., Budny, P. G., Roberts, A. H. (1991). Contact burns due to thermoplastic road paint. Burns 17(5), 400–401, https://doi.org/10.1016/s0305-4179(05)80074-9.

102. Sánchez-Silva, M., Klutke, G. A. (2016). Reliability and life-cycle analysis of deteriorating systems, https://doi.org/10.1007/978-3-319-20946-3. Springer International Publishing: Cham, Switzerland.

103. Sandhu, N. K., Axe, L., Ndiba, P. K., Jahan, K. (2013). Metal and metalloid concentrations in domestic and imported glass beads used for highway marking. Environmental Engineering Science 30(7), 387–392, https://doi.org/10.1089/ees.2013.0023.

104. Schacht, A., Oeser, M. (2014). Bewertung der Griffigkeit von Fahrbahnmarkierungen bei Nässe [in German]. Straße und Autobahn 65(8), 583–590.

105. Schreiber, A., Marx, J., Zapp, P. (2021). Life Cycle Assessment studies of rare earths production-findings from a systematic review. Science of the Total Environment 791, 148257, https://doi.org/10.1016/j.scitotenv.2021.148257.

106. Shin, S. Y., Lee, J. I., Chung, W. J., Choi, Y. G. (2019). Correlations between refractive index and retroreflectance of glass beads for use in road-marking applications under wet conditions. Current Optics and Photonics 3(5), 423–428, https://doi.org/10.3807/COPP.2019.3.5.423.

107. Skierczyński, P., Lusa, R., Prasalska-Nikoniuk, J. (2024). Solvent-based paints used for temporary road marking with high reflectivity. Materiały Budowlane 628, 115–122, https://doi.org/10.15199/33/2024.12.13.

108. Soilán, M., González-Aguilera, D., del-Campo-Sánchez, A., Hernández-López, D., Del Pozo, S. (2022). Road marking degradation analysis using 3D point cloud data acquired with a low-cost mobile mapping system. Automation in Construction 141, 104446, https://doi.org/10.1016/j.autcon.2022.104446.

109. Songchitruksa, P., Ullman, G. L., Pike, A. M. (2010). Guidance for Cost-Effective Selection of Pavement Marking Materials for Work Zones. Journal of Infrastructure Systems 17(2), 55–65, http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000043.

110. Spieringhs, R. M., Smet, K., Heynderickx, I., Hanselaer, P. (2022). Road marking contrast threshold revisited. Leukos 18(4), 493–512, https://doi.org/10.1080/15502724.2021.1993893.

111. Steubing, B., Wernet, G., Reinhard, J., Bauer, C., Moreno-Ruiz, E. (2016). The Ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. The International Journal of Life Cycle Assessment 21, 1269–1281, https://doi.org/10.1007/s11367-016-1109-6.

112. Storsæter, A. D., Pitera, K., McCormack, E. D. (2020). The automated driver as a new road user. Transport Reviews 41(5), 533–555, https://doi.org/10.1080/01441647.2020.1861124.

113. Stratmann, H., Hellmund, M., Veith, U., End, N., Teubner, W. (2020). Indicators for lack of systemic availability of organic pigments. Regulatory Toxicology and Pharmacology 115, 104719, https://doi.org/10.1016/j.yrtph.2020.104719.

114. Su, Y. M., Chen, J. H., Cheng, J. Y., Hsu, Y. T., Huang, M. C. (2022). Rough-set based association rules toward performance of high-friction road markings. Journal of Transportation Engineering, Part B: Pavements 148(2), 05022001, https://doi.org/10.1061/JPEODX.000035.

115. Suwarto, F., Parry, T., Airey, G. (2024). Review of methodology for life cycle assessment and life cycle cost analysis of asphalt pavements. Road Materials and Pavement Design 25(8), 1631–1657, https://doi.org/10.1080/14680629.2023.2278149.

116. Szpakowska-Kozikowska, E., Mniszek, W. (2014). Exposure assessment of workers during road surface marking. Zeszyty Naukowe Wyższej Szkoły Zarządzania Ochroną Pracy w Katowicach 1(10), 32–40.

117. Taheri, M., Jahanfar, M., Ogino, K. (2017). Self-cleaning traffic marking paint. Surfaces and Interfaces 9, 13–20, http://dx.doi.org/10.1016/j.surfin.2017.07.004.

118. Turner, A., Filella, M. (2022). Lead and chromium in European road paints. Environmental Pollution 316, 120492, https://doi.org/10.1016/j.envpol.2022.120492.

119. Turner, A., Keene, J. (2023). Glass microbeads in coastal sediments as a proxy for traffic-related particulate contamination. Marine Pollution Bulletin 188, 114663, https://doi.org/10.1016/j.marpolbul.2023.114663.

120. TXDOT (2017). Departmental materials specification DMS-8200. Traffic paint. Texas Department of Transportation: Austin, Texas, the United States.

121. van der Kooij, H. M., Sprakel, J. (2015). Watching paint dry; more exciting than it seems. Soft Matter 11(32), 6353–6359, http://dx.doi.org/10.1039/C5SM01505G.

122. Vedam, K., Stoudt, M. D. (1978). Retroreflection from spherical glass beads in highway pavement markings. 2: Diffuse reflection (a first approximation calculation). Applied Optics 17(12), 1859–1869, https://doi.org/10.1364/AO.17.001859.

123. Vijayan, A., Österlund, H., Magnusson, K., Marsalek, J., Viklander, M. (2022). Microplastics (MPs) in urban roadside snowbanks: quantities and dynamics of release. Science of the Total Environment 851(2), 158306, https://doi.org/10.1016/j.scitotenv.2022.158306.

124. Võ, U.-U. T.; Morris, M. P. (2014). Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds. Journal of the Air & Waste Management Association 64(6), 661–669, http://dx.doi.org/10.1080/10962247.2013.873746.

125. Wälivaara, B. (2007). Validering av VTI-PFT version 4: mätningar på plana och profilerade vägmarkeringar [in Swedish]. VTI notat 16-2007. Swedish National Road and Transport Research Institute VTI: Linköping, Sweden.

126. Wang, T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., Mao, L., Zhang, C., Yu, W. (2019). Emission of primary microplastics in mainland China: invisible but not negligible. Water Research 162, 214–224, https://doi.org/10.1016/j.watres.2019.06.042.

127. West-Clarke, Z., Turner, A. (2024). Contamination of Thames Estuary sediments by retroreflective glass microbeads, road marking paint fragments and anthropogenic microfibres. Science of the Total Environment 912, 169257, https://doi.org/10.1016/j.scitotenv.2023.169257.

128. Wijnen, W., Weijermars, W., Schoeters, A., van den Berghe, W., Bauer, R., Carnis, L., Elvik, R., Martensen, H. (2019). An analysis of official road crash cost estimates in European countries. Safety Science 113, 318–327, https://doi.org/10.1016/j.ssci.2018.12.004.

129. Yılmaz, B., Deniz, I., Fazlı, H., Bekircan, O., Gültekin, E., Pranovich, A. (2024). Development of biobased, sustainable and environmentally friendly glycerol ester rosins for the production of thermoplastic road marking paint. Journal of Applied Polymer Science 141(38), e55961, https://doi.org/10.1002/app.55961.

130. Zahidy, A. A., Sutanto, M. H., Sorooshian, S. (2024). Examining the relationship between road service quality and road traffic accidents: a case study on an expressway in Malaysia. Traffic Safety Research 8, e000056, https://doi.org/10.55329/gzqy492.

131. ZTV-M (2013). Zusätzlichen Technischen Vertragsbedingungen und Richtlinien für Markierungen auf Straßen (ZTV-M); 2013. Serie: FGSV, Nr. 341 [in German]. FGSV Verlag: Köln; Germany.

Downloads

Published

2025-10-14

Data Availability Statement

Selected data available from the author.

Issue

Section

Original articles

How to Cite

Burghardt, T. E. (2025). Sustainable road markings for sustainable urban mobility – selection guidelines based on environmental and durability parameters. Archives of Transport, 74(2), 131-156. https://doi.org/10.61089/aot2025.2bh6h360

Share

Most read articles by the same author(s)

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

Similar Articles

1-10 of 296

You may also start an advanced similarity search for this article.

Crash data reporting systems in fourteen Arab countries: challenges and improvement

Zahira Abounoas, Wassim Raphael, Yarob Badr, Rafic Faddoul, Anne Guillaume (Author)

Preliminary safety assessment of Polish interchanges

Marcin Budzyński, Agnieszka Tubis, Mateusz Rydlewski (Author)