Determination of dynamic parameters of a tram wheel parts in a numerical and experimental modal analysis
DOI:
https://doi.org/10.5604/01.3001.0053.7357Keywords:
rail vehicles, modal analysis, simulation, modes extractionAbstract
The analysis of dynamic parameters finds effective application in processes related to the assessment of the technical condition of machines. Mass transport vehicles are particularly sensitive to maintaining an appropriate level of traffic safety through relevant design and diagnostics. The combination of numerical and experimental methods increases the efficiency of modal properties investigations, which can be used as diagnostic parameters. During the research, the authors performed a numerical model of a system composed of a rim and an inner disc of a wheel fitted in a Konstal 105Na tram, widely used in many polish cities and frequently subjected to repair and renovation processes. The Time Response analysis in SOLIDWORKS (also called Modal Time History) was then conducted, resulting in obtaining information about object vibration response in time domain to the impulsive excitation at given points. These signals were then processed in MATLAB aiming at determining the frequencies of natural vibration and damping ratios. The processing parameters in MATLAB were corresponding to the analysis settings of the experimental measurement, carried out within the BK Connect environment, with an impact modal hammer and piezoelectric transducers. When analyzing the experimental measurements, the authors applied Fast Fourier Transformation, Frequency Response Function and Complex Mode Indicator Function (the theoretical basis of which and practical sense of application were also presented in the paper). Finally, the results of the experiment were compared with simulation outcomes. This comparison allowed the obtainment of frequency characteristics of the vibration response to the impact and the determination of the dynamic parameters of the actual object. Six frequencies of natural vibrations were determined in the frequency range of 0 to 3000 Hz, as well as their damping ratios and autocorrelation indicators between modes. Similarities and potential sources of differences between the numerical and the experimental results were identified and explained, followed by conclusions on the practical application of the presented research methodology in the industry.
References
Agneni, A., Balis Crema, L., Coppotelli, G. (2010). Output-only analysis of structures with closely spaced poles. Mechanical Systems and Signal Processing, 24, 1240-1249. DOI: 10.1016/j.ymssp.2009.10.013.
Allemang, R., Brown, D. (2006). A Complete Review of the Complex Mode Indicator Function (CMIF) with Applications. Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, 6.
Amirali, S., Shapou, M. (2021). A new SVD based filtering technique for operational modal analysis in the presence of harmonic excitation and noise. Journal of Sound and Vibration, 510. DOI: 10.1016/j.jsv.2021.116252.
Bakir, P., Eksioglu, E., Alkan, S.(2012). Reliability analysis of the complex mode indicator function and Hilbert Transform techniques for operational modal analysis. Expert Systems with Applications, 39, 13289-13294. DOI: 10.1016/j.eswa.2012.05.073.
Castillo, M.A., Gutiérrez, R.H.R., Monteiro, U.A., Minette, R.S., Vaz, L.A. (2019). Modal parameters estimation of an electrical submersible pump installed in a test well using numerical and experimental analysis. Ocean Engineering, 176, 1-7. DOI: 10.1016/ j.oceaneng.2019.02.03.
Cataldi-Spinola, E., Glocker, C., Stefanelli, R., Mathias, G. (2004). Eigen-frequency shift of railway wheels due to wear. Proceedings CFA/DAGA, 04 , 22-26.
Chauhan, S., Martell R., Allemang, R., Brown, D. (2007). Implementation of Complex Frequency Mapping to Low Order Frequency Domain algorithm for Operational Modal Analysis. Proceedings of the International Modal Analysis Conference.
Cigada, A., Manzoni, S., Vanali, M. (2008).Vibro-acoustic characterization of railway wheels. Applied Acoustics, 69, 530- 545. DOI: 10.1016/j.apacoust.2007.01.002.
Cong, S., Hu, S. L. J., Li, H. J. (2022). FRF based pole-zero method for finite element model updating. Mechanical Systems and Signal Processing, 177, 109206. DOI: 10.1016/j.ymssp.2022.109206.
Eslaminejad, A., Ziejewski, M., Karami, G. (2019). An experimental - numerical modal analysis for the study of shell-fluid interactions in a clamped hemispherical shell. Applied Acoustics, 152, 110-117. DOI: 10.1016/j.apacoust.2019.03.029.
Ewins, D.J. (2000). Modal Testing: Theory, Practice, and Application. Research Studies Press, Baldock, 2nd ed.
Farahani, A.M., Mahjoob, M. (2018). Modal Analysis of a Non-rotating Inflated Tire using Experimental and Numerical Methods. International Journal of Engineering Innovation & Research, 7, 15-21.
Galaitsis A.G., Bender E.K. (1976). Wheel/rail noise-Part V: Measurement of wheel and rail roughness. Journal of Sound and Vibration, 46(3), 437-451. DOI: 10.1016/0022-460X (76)90865-8.
Harak, S.S., Sharma, S.C., Harsha, S.P. (2014). Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method. Procedia Mater Sciencem, 6, 1891-1898. DOI: 10.1016/j.mspro.2014.07.221.
Hassani, S., Shadan, F. (2022). Using incomplete FRF measurements for damage detection of structures with closely-spaced eigenvalues. Measurement, 188, 110388. DOI: 10.1016/j.measurement.2021.110388.
He, J., Fu Z-F. (2001). Frequency response function measurement. Modal Analysis. Elsevier. DOI: 10.1016/j.proeng.2014.12.136.
Huňady, R., Hagara, M. (2015). Experimental Investigation of Mode Shapes of Symmetric Structures. Acta Mechanica Slovaca, 19, 12- 17. DOI: 10.21496/ams.2015.018.
Iezzi, F., Valente, C. (2017). Modal Density Influence on Modal Complexity Quantification in Dynamic Systems. Procedia Engineering, 199, 942-947. DOI: 10.1016/j.proeng.2017 .09.245.
Jacobsen, N-J. (2018). Seminar and Workshop on Structural Dynamics. Poznan University of Technology, Poznan.
Janssens, M.H.A., Dittrich, M.G., Beer, F.G. De, Jones, C.J.C. (2006). Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay. Journal of Sound and Vibration, 29, 1007-1028. DOI: 10.1016/j.jsv.2005.08.070.
Kawrza, M., Furtmüller, T., Adam, C. (2022). Experimental and numerical modal analysis of a cross laminated timber floor system in different construction states. Construction and Building Materials, 344, 128032. DOI: 10.1016/j.conbuildmat.2022.128032.
Kępczak, N., Witkowski, B. (2022). Modal Assurance Criterion as an iron cast and hybrid machine tool's body comparison tool. Journal of Manufacturing Processes, 79, 881-886. DOI: 10.1016/j.jmapro.2022.05.031.
Kim, J. B., Eun, H. C. (2013). Identification of parameter matrices using estimated FRF variation. Journal of Vibroengineering, 15(1), 124- 131.
Klimenda, F., Soukup, J. (2017). Modal Analysis of Thin Aluminium Plate. Procedia Engineering, 177, 11-17. DOI: 10.1016/j.proeng.2017.02.176.
Komorski, P., Nowakowski, T., Firlik, B., Szymanski, G.M. (2018a). Analysis of wheel and track irregularities impact on the vibroacoustic signals emission in rail vehicles. 25th International Congress on Sound and Vibration 2018, ICSV 2018: Hiroshima Calling, 7, 3864-3871.
Komorski, P., Nowakowski, T., Szymanski, G.M., Tomaszewski, F. (2018b). Application of Time-Frequency Analysis of Acoustic Signal to Detecting Flat Places on the Rolling Surface of a Tram Wheel. In: Awrejcewicz, J. (eds) Dynamical Systems in Applications. DSTA 2017. Springer Proceedings in Mathematics & Statistics, 249. Springer, Cham. DOI: 10.1007/978-3-319-96601-4_19.
Komorski, P., Szymański, G.M., Nowakowski, T. (2022). Development of the urban rail vehicle acoustic model. Applied Acoustic, 195, DOI: 10.1016/j.apacoust.2022.108807.
Kurowski, P. (2014). Vibration Analysis with Solid Works Simulation 2014, SDC Publications.
Melero, M., Nieto, A. J., Casero-Alonso, V., Palomares, E., Morales, A. L., Ramiro, C., Pin tado, P. (2022). Design of Experiments to determine the influence of test procedure on Experimental Modal Analysis. Journal of Sound and Vibration, 538, 117229. DOI: 10.1016/j.jsv.2022.117229.
Milewicz J., Mokrzan, D., Szymański, G. M. (2021). The assessment of the technical condition of SO-3 engine turbine blades using an impulse test. Combustion Engines, 184, 24- 29. DOI: 10.19206/CE-133872.
Milewicz, J., Mokrzan, D., Nowakowski, T., Szymański, G.M. (2022). Using the MIMO Method to Evaluate the Modal Properties of the Elements of a Wheelset in an Active Experiment. Vibrations in Physical Systems, 33(3), DOI: 10.21008/j.0860-6897.2022.3.24.
Mitchell L. (1982). Improved Methods for the Fast Fourier Transform (FFT) Calculation of the Frequency Response Function. Journal of Mechanical Design, 104, 277-279.
Mokrzan, D., Milewicz, J., Szymański, G.M., Szrama, S. (2021). Vibroacoustic analysis in the assessment of the technical condition of the aircraft airframe composite elements. Diagnostyka, 22, 11-20. DOI: 10.29354/diag/135098.
Nadkarni, I., Bhardwaj, R., Ninan, S., Shippa, S.P. (2021). Experimental modal parameter identification and validation of cantilever beam. Materials Today: Proceedings, 38 (1), 319-324. DOI: 10.1016/j.matpr.2020.07.396.
Nangolo, N. F., Soukup, J., Rychlikova, L., Skočilas, J. (2014). A combined numerical and modal analysis on vertical vibration response of railway vehicle. Procedia Engineering, 96, 310-319.
Niziński, S., Michalski, R. (2002). Diagnostyka obiektów technicznych. Radom: Instytut Technologii Eksploatacji.
Omar, O., Tounsi, N., Ng, E.G., Elbestawi, M.A. (2010). An optimized rational fraction polynomial approach for modal parameters estimation from FRF measurements. Journal of mechanical science and technology, 24(3), 831-842.
Orban, F. (2010). Damping of materials and members in structures. Journal of Physics: Conference Series, 268. DOI: 10.1088/1742- 6596/268/1/012022.
Pastor, M., Binda, M., Harčarik, T. (2012). Modal Assurance Criterion. Procedia Engineering, 48, 543-548. DOI: 10.1016/j.proeng.2012.09.551.
Pereira, D.A., Guimarães, T.A.M., Resende, H.B., Rade, D.A. (2020). Numerical and experimental analyses of modal frequency and damping in tow-steered CFRP laminates. Composite Structures, 244. DOI: 10.1016/j.compstruct.2020.112190.
Petrova, R.V. (2014). Introduction to static analysis using Solid Works simulation. CRC Press.
Piec, P. (1999). Zjawiska kontaktowe w elementach pojazdów szynowych. Prace Instytutu Pojazdów Szynowych Politechniki Krakowskiej, Kraków.
Randall, R., Zurita, G., Wardrop T. (2004). Extraction of modal parameters from response measurements. Investigación & Desarrollo, 12, 5-12.
Rao, P. K. V., Varma, G. R. P., Vivek, K. S. (2022). Structural dynamic analysis of freight railway wagon using finite element analysis. Materials Today: Proceedings, 66(11). DOI: 10.1016/j.matpr.2022.04.770.
Sowinski, B. (2016). Analysis of high frequency vibration of tram monobloc wheel. Archives of Transport, 39, 65-75. DOI:10.5604/08669546.1225450.
Suarez, B., Serrano, B.J., Rodriguez, P., Blanquer, J. (2006). Comparison of Vibration and Rolling Noise Emission of Resilient and Solid Monobloc Railway Wheels in Underground Lines, Proceedings of the Institution of Mechanical Engineers, 225, 545- 565.
Teimouri-Sichani, M., Ahmadian, H. (2006). Identification of Railway Car Body Model Using Operational Modal Analysis. Proceedings of the 8th International Railway Transportation Conference (IRTC), Tehran.
Thompson D.J. (1996). On the relationship between wheel and rail surface roughness and rolling noise. Journal of Sound and Vibration, 193, 149-160.
Van der Auweraer, H. (2001). Structural dynamics modeling using modal analysis: applications, trends and challenges. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics, 3, 1502-1509. DOI: 10.1109/IMTC.2001.929456.
Wei, L., Sun, Y., Zeng, J., Qu, S. (2022). Experimental and numerical investigation of fatigue failure for metro bogie cowcatchers due to modal vibration and stress induced by rail corrugation. Engineering Failure Analysis, 142, 106810. DOI: 10.1016/j.engfailanal.2022.106810.
Żółtowski, M., Napieraj, K. (2017). Experimental modal analysis in research. Budownictwo i Architektura, 16 (3), 005-012
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.
This work is licensed under a Creative Commons Attribution 4.0 International License.