Standards and requirements concerning reduction of CO₂ emission for new passenger cars
DOI:
https://doi.org/10.61089/aot2025.whr7qq76Keywords:
passenger vehicles, CO2 reduction, fuel consumption reduction, target emission levelsAbstract
Imposed standards and requirements are supposed to make road transport cleaner, to achieve, defined by the European Union (EU), target levels of reduction of emission of greenhouse gasses since 2030 and contribute to achievement of the goals of Paris Agreement. Adopted requirements refer also to CO2 emission for new passenger cars and new light commercial vehicles (vans). It was adopted that average annual level of CO2 emission of the EU vehicle fleet, in comparison with 2021, to be reduced both for new passenger cars and new light commercial vehicles by 15 % for the years 2025–2029; 55 % for new cars and 50 % for new light commercial vehicles for the years 2030–2034 and 100 % since January 1, 2035. In 2025, the Commission will present methodology of reporting and assessing data concerning CO2 emission in the whole life cycle of passenger cars and vans sold on the EU market. Since June 1, 2026, producers may commence data reporting based on this common EU method concerning CO2 emission in life cycle of a vehicle. The authors of this article presented new regulation specifying the requirements concerning CO2 emission for new passenger cars and new light commercial vehicles, which should contribute to achievement of EU target levels of reduction of emission of greenhouse gasses. Target individual levels of CO2 emission for passenger cars in the years 2024-2035 were analysed. For ten most popular passenger cars registered in Poland, an analysis of reduction of level of CO2 emission was conducted in order to determine whether limit of CO2 emission was increased to the level of 95g/km, 93,6g/km and 49,5 g/km.
References
1. Erbach, G. (2023). CO2 emission standards for new cars and vans 'Fit for 55' package. Members' Research Service. European Parliamentary Research Service. PE 698.920 – May 2023.
2. Soone, J. (2023). Alternative fuels infrastructure. Members' Research Service. European Parliamentary Research Service. PE 749.811. July 2023.
3. Jensen, L. (2020). EU climate target plan. Raising the level of ambition for 2030. Climate Action Research and Tracking Service. Members' Research Service. European Parliamentary Research Service. PE 659.370 - December 2020.
4. Masson-Delmotte, V., et al. (2021). The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.
5. Brach, J. (2016). Sposoby na zmniejszenie emisji CO2 w drogowym transporcie towarowym. Zeszyty Naukowe Uniwersytetu Gdańskiego. Ekonomika Transportu i Logistyka. 59, 283-297
6. Matsuo, S., et al. (2016). The New Toyota Inline 4 Cylinder 1.9L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car. SAE paper 2016-04-05. https://doi.org/10.4271/2016-01-0684.
7. Doğan, B., Erol, D. (2019). The Future of Fossil and Alternative Fuels Used in Automotive Industry, 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 1-8, https://doi.org/10.1109/ISMSIT.2019.8932925.
8. Hu, B., et al. (2018). Progress and recent trends in 48 V hybridisation and e-boosting technology on passenger vehicles – a review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 232(11), 1543-1561. https://doi.org/10.1177/0954407017729950
9. Cecchel, S., et al. (2018). Impact of reduced mass of light commercial vehicles on fuel consumption, CO2 emissions, air quality, and socio-economic costs. Science of the total environment. 613, 409-417.
10. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011.
11. Regulation (EU) 2023/851 of the European Parliament and of the Council of 19 April 2023 amending Regulation (EU) 2019/631 as regards strengthening the CO2 emission performance standards for new passenger cars and new light commercial vehicles in line with the Union’s increased climate ambition.
12. Lidstone, L. (2014). The road ahead. Engineering 255 (1), 37–38
13. Peters, J., Burguillo, M., Arranz, J. (2021). Low emission zones: Effects on alternative-fuel vehicle uptake and fleet CO2 emissions, Transportation Research Part D: Transport and Environment, 95, 102882, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2021.102882.
14. Delbeke, J. (2016). Post-COP21: Decarbonising challenge sahead for transport sector. Parliam. Mag.
15. Gnann, T., et al. (2018). What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models, Renewable and Sustainable Energy Reviews, 93, 158-164, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.03.055.
16. Münzel, Ch., Plötz, P., Sprei, F., Gnann, T. (2019). How largeis the effect of financial incentives on electric vehicle sales? A global review and European analysis, Energy Economics, 84, 104493, ISSN 0140-9883, https://doi.org/10.1016/j.eneco.2019.
17. Hardman, S. (2019). Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption – A review, Transportation Research Part A: Policy and Practice, 119, 1-14, ISSN 0965-8564, https://doi.org/10.1016/j.tra.2018.11.002.
18. Mekky, M., Collins, A. (2024). The Impact of state policies on electric vehicle adoption -A panel data analysis, Renewable and Sustainable Energy Reviews, 191, 114014, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2023.114014.
19. Shang, W-L., Zhang, J., Wang, K., Yang, H., Ochieng, W. (2024). Can financial subsidy increase electric vehicle (EV) penetration-evidence from a quasi-natural experiment, Renewable and Sustainable Energy Reviews, 190, Part A, 114021, https://doi.org/10.1016/j.rser.2023.114021.
20. Gross, S. (2020). The challenge of decarbonizing heavy transport. Brookings Oct. 2022, 1-28.
21. Balyk, J., et al. (2021). Driving Ambitions: The Implications of Decarbonizing the Transportation Sector by 2030. CD Howe Institute Commentary, 604.
22. Jenn, A., Springel, K., Gopal, A. (2018). Effectiveness of electric vehicle incentives in the United States, Energy Policy, 119, 349-356, ISSN 0301-4215, https://doi.org/10.1016/j.enpol.2018.04.065.
23. Kuppusamy, S., Magazine, M., Rao, U. (2023). Impact of downstream emissions cap-and-trade policy on electric vehicle and clean utility adoption, Transportation Research Part E: Logistics and Transportation Review, 180, 103353, https://doi.org/10.1016/j.tre.2023.103353.
24. Lee, K. (2023). Bold fiscal policies for a net-zero EU: Promotion of electric vehicles and expansion of green energy, Energy Reports, 10, 2944-2949, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2023.09.138.
25. Higueras‐Castillo, E., et al. (2024). Examining the two‐dimensional perceived marketplace influence and the role of financial incentives by SEM and ANN. Expert Systems, 41(1), e13480.
26. Havrysh, V., et al. (2021). Alternative vehicle fuels management: Energy, environmental and economic aspects. Advanced Energy Technologies and Systems I. 91-115, Cham: Springer International Publishing.
27. Aguilar, P., Groß, B. (2022). Battery electric vehicles and fuel cell electric vehicles, an analysis of alternative powertrains as a mean to decarbonise the transport sector. Sustainable Energy Technologies and Assessments, 53, 102624.
28. Breuer, J., Samsun, R., Stolten, D., Peters R. (2021). How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks, Environment International, 152, 106474, ISSN 0160-4120, https://doi.org/10.1016/j.envint.2021.106474.
29. Clegg, S., Zhang, L., Mancarella, P. (2017). The role of power-to-transport via hydrogen and natural gas vehicles in decarbonising the power and transportation sector, 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 1-6, https://doi.org/10.1109/ISGTEurope.2017.8260305.
30. International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. 2022
31. CLEPA, the European Association of Automotive Suppliers. Net Zero Industry Act and State Ais Reform. A Green and Smart Automotive Industrial Plan for a Competitive and Prosperous Europe. Cours Saint-Michel. 2023.
32. Hoarau, Q., Lorang, E. (2022). An assessment of the European regulation on battery recycling for electric vehicles, Energy Policy, 162, 112770, https://doi.org/10.1016/j.enpol.2021.112770.
33. Toro, L., Moscardini, E., Baldassari, L., Forte, et al. (2023). A Systematic Review of Battery Recycling Technologies: Advances, Challenges, and Future Prospects. Energies, 16(18):6571. https://doi.org/10.3390/en16186571.
34. Yuan, X., Cai, Y. (2021). Forecasting the development trend of low emission vehicle technologies: Based on patent data, Technological Forecasting and Social Change, 166, 120651, ISSN 0040-1625, https://doi.org/10.1016/j.techfore.2021.120651.
35. Borowski, P., Karlikowska, B. (2023). Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy. Energies, 16(3):1171. https://doi.org/10.3390/en16031171.
36. Martins, H., Henriques, C., Figueira, J., Silva, C., Costa, A. (2023). Assessing policy interventions to stimulate the transition of electric vehicle technology in the European Union, Socio-Economic Planning Sciences, 87, Part B, 101505, ISSN 0038-0121, https://doi.org/10.1016/j.seps.2022.101505.
37. Gohlke, D., Kelly, J., Stephens, T., Wu, X., Zhou, Y. (2023). Mitigation of emissions and energy consumption due to light-duty vehicle size increases. Transportation Research Part D: Transport and Environment, 114, 103543.
38. Krajinska A. (2012). Magic green fuels. Transport & Environment.
39. Commission Regulation (EU) 2017/1151 of 1 June 2017supplementingRegulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Commission Regulation (EC) No 692/2008.
40. Branża Motoryzacyjna Raport 2022/2023. Polski Związek Przemysłu Motoryzacyjnego, 2023.
41. Branża Motoryzacyjna Raport 2023/2024. Polski Związek Przemysłu Motoryzacyjnego, 2024.
42. Transport-wyniki działalności w 2022r. Główny Urząd Statystyczny. Warszawa, Szczecin 2023.
43. Branża Motoryzacyjna. Raport kwartalny PZPM i KPMG. Edycja Q1/2024. 4. Polski Związek Przemysłu Motoryzacyjnego end KPMG Sp. z o.o.
44. Raport roczny 2022 i 2023 Przemysł i Handel Naftowy. Polska Organizacja Przemysłu i Handlu Naftowego.
45. www.europarl.europa.eu/topics/pl/article/20190313STO31218/emisje-co2-z-samochodow-fakty-i-liczby-infografiki.
46. Informacje o zużyciu paliwa i emisji CO2 w samochodach osobowych (Rozporządzenie Prezesa Rady Ministrów z dnia 29 kwietnia 2004 roku w sprawie zestawień istotnych z punktu widzenia ochrony środowiska informacji o produktach - Dz. U. z 2004 r., Nr 98.).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.

This work is licensed under a Creative Commons Attribution 4.0 International License.