Impact of different car-following models on estimating safety and emissions on signal-controlled intersections using microscopic simulations
DOI:
https://doi.org/10.61089/aot2024.eb2hfe27Keywords:
Traffic modelling, car-following models, modelling safety, modelling emissions, microscopic traffic simulationsAbstract
This paper examines the influence of two selected car-following models on the outcomes of microscopic traffic simulations. The authors begin by reviewing the literature on the various traffic models, methods for estimating energy consumption, fuel use, and emissions. The authors discuss using surrogate safety measures derived from analysing vehicle trajectories in a microscopic traffic model to estimate safety levels. This paper also outlines the authors' approach to data acquisition and processing at the chosen test site. Most data are sourced from the city's Intelligent Transport System (ITS) services, including traffic flow volume, vehicle speed, and public transport travel times. The data gathered from Automatic Vehicle Location (AVL) systems was compared to manual travel time measurements. Depending on the analysed section Mean Average Error (MAE) ranging from 3 to 5 seconds was obtained, however, Mean Absolute Percentage Error (MAPE) ranged from 7.46% to 30.01%. The proposed method aims to evaluate the precision of the microscopic model in replicating real road networks and traffic based on available datasets. Two car-following models (CFM), Wiedemann 74 (W74), and Wiedemann 99 (W99) are chosen for further analysis. The models were validated using the GEH statistic and by comparing speed distributions. Both the models yielded satisfactory results. Different scenarios involving changes in traffic flow and to traffic signal configurations were analysed. While both W74 and W99 yielded satisfactory results, there were discernible disparities in the analyses. In general, W99 yields less favourable results, characterised by emissions, and delays compared to W74. Depending on the scenarios compared, the number of conflicts for W74 varied up to 56% (scenarios 2 and 4), and up to 78% for W99 (scenarios 1 and 4). The methodology presented by the authors can be used in future research to analyse various traffic control solutions concerning their impact on the environment and traffic safety. The observed differences underscore the importance of careful model selection and presented approach can serve as a foundation for developing guidelines for microscopic modelling and a multi-criteria approach to selecting the most effective implementation scenarios.
References
1. Acuto, F., Coelho, M. C., Fernandes, P., Giuffrè, T., Macioszek, E., & Granà, A. (2022). Assessing the Environmental Performances of Urban Roundabouts Using the VSP Methodology and AIMSUN. Energies, 15(4), 1371. https://doi.org/10.3390/en15041371
2. Aghabayk, K., Sarvi, M., Young, W., & Kautzsch, L. (2013). A novel methodology for evolution-ary calibration of vissim by multi-threading. Australasian Transport Research Forum, ATRF 2013 - Proceedings, October, 1–15. Australian National Audit Office.
3. Ahmed, H. U., Huang, Y., & Lu, P. (2021). A review of car-following models and modeling tools for human and autonomous-ready driving behaviors in micro-simulation. Smart Cities, 4(1), 314–335. https://doi.org/10.3390/smartcities4010019
4. Aimsun (2024). Aimsun Next 24 User’s Manual, Aimsun Next Version 24.0.0, Barcelona, Spain. Retrieved April 16, 2024, from https://docs.aimsun.com/next/24.0.0/
5. Ajanovic, A., & Haas, R. (2017). The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15. Renewable and Sustainable Energy Reviews, 68, 1088–1096. https://doi.org/10.1016/j.rser.2016.02.013
6. Alonso, A., Monzón, A., & Wang, Y. (2017). Modelling Land Use and Transport Policies to Measure Their Contribution to Urban Challenges: The Case of Madrid. Sustainability, 9(3), 378. https://doi.org/10.3390/su9030378
7. Ambroziak, T., Jachimowski, R., Pyza, D., & Szczepański, E. (2015). Analysis of the Traffic Stream Distribution in Terms of Identification of Areas With the Highest Exhaust Pollution. Ar-chives of Transport, 32(4), 7–16. https://doi.org/10.5604/08669546.1146993
8. Archer, J. (2005). Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: A study of urban and suburban intersections. [Doctoral Dissertation, Royal Institute of Technology]. DiVA portal. https://www.diva-portal.org/smash/get/diva2:7295/FULLTEXT01.pdf
9. Barcelo, J. (Ed.) (2010). Fundamentals of Traffic Simulation (International Series in Operations Research & Management Science). NY, Springer. DOI:10.1007/978-1-4419-6142-6
10. Benjamin, S. C., Johnson, N. F., & Hui, P. M. (1996). Cellular automata models of traffic flow along a highway containing a junction. Journal of Physics A: Mathematical and General, 29(12), 3119. https://doi.org/10.1088/0305-4470/29/12/018
11. Bennajeh, A., Bechikh, S., Said, L. Ben, & Aknine, S. (2018). A fuzzy logic-based anticipation car-following model. In Thanh Nguyen, N., Kowalczyk, R. (Eds.), Transactions on Computation-al Collective Intelligence XXX. Lecture Notes in Computer Science, 11120, 200–222. Cham: Springer. https://doi.org/10.1007/978-3-319-99810-7_10
12. Biggs, D. C., & Akcelik, R. (1986). Models for Estimation of Car Fuel Consumption in Urban Traffic. ITE Journal (Institute of Transportation Engineers), 56(7), 29–32.
13. Bonnafous, A., Gonzalez-Feliu, J., & Routhier, J.-L. (2013). An alternative UGM Paradigm to O-D matrices: the FRETURB model. 13th World Conference on Transport Research (13th WCTR), Rio de Janeiro, Brazil, 15–18 July 2013. https://shs.hal.science/halshs-00844652v2
14. Cafiso, S., D’Agostino, C., Kieć, M., & Bak, R. (2018). Safety assessment of passing relief lanes using microsimulation-based conflicts analysis. Accident Analysis and Prevention, 116, 94–102. https://doi.org/10.1016/j.aap.2017.07.001
15. Chaudhari, A. A., Srinivasan, K. K., Chilukuri, B. R., Treiber, M., & Okhrin, O. (2022). Calibrat-ing Wiedemann-99 Model Parameters to Trajectory Data of Mixed Vehicular Traffic. In Trans-portation Research Record: Journal of the Transportation Research Board, 2676(1), 718–735. https://doi.org/10.1177/03611981211037543
16. Cheng, S., Li, L., Mei, M. M., Nie, Y. L., & Zhao, L. (2019). Multiple-Objective Adaptive Cruise Control System Integrated with DYC. IEEE Transactions on Vehicular Technology, 68(5), 4550–4559. https://doi.org/10.1109/TVT.2019.2905858
17. Creutzig, F., Roy, J., Lamb, W. F., Azevedo, I. M. L., Bruine De Bruin, W., Dalkmann, H., Edelenbosch, O. Y., Geels, F. W., Grubler, A., Hepburn, C., Hertwich, E. G., Khosla, R., Mat-tauch, L., Minx, J. C., Ramakrishnan, A., Rao, N. D., Steinberger, J. K., Tavoni, M., Ürge-Vorsatz, D., & Weber, E. U. (2018). Towards demand-side solutions for mitigating climate change. Nature Climate Change, 8(4), 268–271. https://doi.org/10.1038/s41558-018-0121-1
18. Dias, J. E. A., Pereira, G. A. S., & Palhares, R. M. (2015). Longitudinal Model Identification and Velocity Control of an Autonomous Car. IEEE Transactions on Intelligent Transportation Sys-tems, 16(2), 776–786. https://doi.org/10.1109/TITS.2014.2341491
19. Durrani, U., Lee, C., & Maoh, H. (2016). Calibrating the Wiedemann’s vehicle-following model using mixed vehicle-pair interactions. Transportation Research Part C: Emerging Technologies, 67, 227–242. https://doi.org/10.1016/j.trc.2016.02.012
20. EEA (2024). Greenhouse gas emissions by source sector. [Data set]. European Environment Agency. https://doi.org/10.2908/ENV_AIR_GGE
21. Elvik, R., Hoye, A., Vaa, T., & Sorensen, M. (2009). Part II Road Safety Measures. In Elvik, R., Høye, A., Vaa, T. & Sørensen, M. (Eds.), The Handbook of Road Safety Measures (2nd ed, 144-1092). Emerald Group Publishing. https://doi.org/10.1108/9781848552517
22. Essa, M., & Sayed, T. (2018). Traffic conflict models to evaluate the safety of signalized inter-sections at the cycle level. Transportation Research Part C: Emerging Technologies, 89, 289–302. https://doi.org/10.1016/j.trc.2018.02.014
23. Gavanas, N., Pozoukidou, G., & Verani, E. (2016). Integration of LUTI models into sustainable urban mobility plans (SUMPs). European Journal of Environmental Sciences, 6(1), 11–17. https://doi.org/10.14712/23361964.2016.3
24. Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear Follow-the-Leader Models of Traffic Flow. Operations Research, 9(4), 545–567. https://doi.org/10.1287/opre.9.4.545
25. Gerlough, D. L., & Huber, M. J. (1975). Traffic Flow Theory. A Monograph. ( TRB Special Re-port 165). National Research Council. http://onlinepubs.trb.org/Onlinepubs/sr/sr165/165.pdf
26. Gettman, D., Sayed, T., Pu, L., & Shelby, S. (2008). Surrogate Safety Assessment Model and Val-idation: Final Report. (Report No. Fhwa-Hrt-08-51). U.S. Department of Transportation, Federal Highway Administration. https://www.fhwa.dot.gov/publications/research/safety/08051/08051.pdf
27. Gipps, P. G. (1981). A Behavioral car-following model for Computer simulation. Transportation Research Part B: Methodological, 15(2), 105–111. https://doi.org/https://doi.org/10.1016/0191-2615(81)90037-0
28. Givoni, M., Beyazit, E., & Shiftan, Y. (2016). The use of state-of-the-art transport models by pol-icymakers – Beauty in simplicity? Planning Theory & Practice, 17(3), 385–404. https://doi.org/10.1080/14649357.2016.1188975
29. Golob, T. F., Recker, W. W., & Alvarez, V. M. (2004). Freeway safety as a function of traffic flow. Accident Analysis & Prevention, 36(6), 933–946. https://doi.org/10.1016/j.aap.2003.09.006
30. Gore, N., Chauhan, R., Easa, S., & Arkatkar, S. (2023). Traffic Conflict Assessment Using Mac-roscopic Traffic Flow Variables: A Novel Framework for Real-Time Applications. Accident Anal-ysis & Prevention, 185, 107020. https://doi.org/10.1016/j.aap.2023.107020
31. Han, J., Wang, X., & Wang, G. (2022). Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review. Sustainability, 14(13), 8179. https://doi.org/10.3390/su14138179
32. Hayward, J. C. (1972). Near-miss determination through use of a scale of danger. Highway Re-search Record, 384, 22–34. http://onlinepubs.trb.org/Onlinepubs/hrr/1972/384/384-004.pdf
33. Hussain, E., Ahmed, S. I., & Ali, M. S. (2018). Modeling the effects of rainfall on vehicular traf-fic. Journal of Modern Transportation, 26(2), 133–146. https://doi.org/10.1007/s40534-018-0155-0
34. Hussain, M. S., Bahrha, G., & Goswami, A. K. (2024). An integrated VISSIM-SSAM approach to predicting and mitigating pedestrian crashes and severity along urban crossings. Case Studies on Transport Policy, 15, 101153. https://doi.org/10.1016/j.cstp.2024.101153
35. Jacyna, M., Wasiak, M., Kłodawski, M., & Gołȩbiowski, P. (2017). Modelling of Bicycle Traffic in the Cities Using VISUM. Procedia Engineering, 187, 435–441. https://doi.org/10.1016/j.proeng.2017.04.397
36. Jacyna, M., Zochowska, R., Sobota, A., & Wasiak, M. (2021). Scenario analyses of exhaust emissions reduction through the introduction of electric vehicles into the city. Energies, 14(7), 2030. https://doi.org/10.3390/en14072030
37. Jacyna, M., Zochowska, R., Sobota, A., & Wasiak, M. (2022). Decision support for choosing a scenario for organizing urban transport system with share of electric vehicles. Scientific Journal of Silesian University of Technology. Series Transport, 117, 69–89. https://doi.org/10.20858/sjsutst.2022.117.5
38. Jamroz, K., Budzynski, M., Romanowska, A., Zukowska, J., Oskarbski, J., & Kustra, W. (2019). Experiences and Challenges in Fatality Reduction on Polish Roads. Sustainability, 11(4), 959. https://doi.org/10.3390/su11040959
39. Jastrzebski, W. (2016). Blaski i cienie statystyki GEH do oceny poprawności modeli ruchu. Transport Miejski i Regionalny, 6, 24–26. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8786afa3-1ab2-4843-ab2c-52409c928a66/c/TMiR_6_2016_Jastrzebski.pdf
40. Jayakrisham, R., Mahmassani, H. S., & Yu, T. Y. (1994). An evaluation tool for advanced traffic information and management systems in urban networks. Transportation Research Part C: Emerging Technologies, 2(3), 129–147. https://doi.org/10.1016/0968-090X(94)90005-1
41. Koupal, J., Landman, L., Nam, E., Warila, J., Scarbro, C., Glover, E., & Giannelli, R. (2005). MOVES2004 Energy and Emission Inputs. Draft Report (Report No. EPA420-P-05-003). United States Environmental Protection Agency. https://nepis.epa.gov/Exe/ZyPDF.cgi/P1001DAQ.PDF?Dockey=P1001DAQ.PDF
42. Kristoffersson, I. (2013). Impacts of time-varying cordon pricing: Validation and application of mesoscopic model for Stockholm. Transport Policy, 28, 51–60. https://doi.org/10.1016/j.tranpol.2011.06.006
43. Laureshyn, A., & Várhelyi, A. (2018). The Swedish Traffic Conflict Technique: observer’s manu-al. Lund University.
44. Law, T. H., Noland, R. B., & Evans, A. W. (2011). The sources of the Kuznets relationship be-tween road fatalities and economic growth. Journal of Transport Geography, 19(2), 355–365. https://doi.org/10.1016/j.jtrangeo.2010.02.004
45. Leung, D. Y. C., & Williams, D. J. (2000). Modelling of motor vehicle fuel consumption and emissions using a power-based model. Environmental Monitoring and Assessment, 65(1–2), 21–29. https://doi.org/10.1007/978-94-010-0932-4_3
46. Liu, H., Xiong, Z., & Gayah, V. V. (2024). Quantifying the Impacts of Right-Turn-on-Red, Ex-clusive Turn Lanes and Pedestrian Movements on the Efficiency of Urban Transportation Net-works. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2024.02.007
47. Lord, D., & Washington, S. (2018). Safe Mobility: Challenges, Methodology and Solutions. Transport and Sustainability, 11. Emerald Publishing. DOI: 10.1108/S2044-9941201811
48. Ma, W., Liu, Y., Kofi Alimo, P., & Wang, L. (2024). Vehicle Carbon Emission Estimation for Urban Traffic based on Sparse Trajectory Data. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2024.01.010
49. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., & Pirani, A. (2018). Special Report: Global warming of 1.5°C. IPCC. https://www.ipcc.ch/sr15/
50. May, A. D. (1990). Traffic flow fundamentals. Englewood Cliffs, NJ: Prentice-Hall.
51. Meng, D., Song, G., Wu, Y., Zhai, Z., Yu, L., & Zhang, J. (2021). Modification of Newell’s car-following model incorporating multidimensional stochastic parameters for emission estimation. Transportation Research Part D: Transport and Environment, 91, 102692. https://doi.org/10.1016/j.trd.2020.102692
52. Newell, G. F. (2002). A simplified car-following theory: a lower order model. Transportation Re-search Part B: Methodological, 36(3), 195–205. https://doi.org/10.1016/S0191-2615(00)00044-8
53. Ortuzar, J. de D., Willumsen, L. G., Ortúzar, J. D. D., & Willumsen, L. G. (2011). Modelling Transport (4th ed.). John Wiley & Sons. https://doi.org/10.1002/9781119993308
54. Oskarbski, J., Birr, K., & Żarski, K. (2021). Bicycle traffic model for sustainable urban mobility planning. Energies, 14(18), 5970. https://doi.org/10.3390/en14185970
55. Oskarbski, J., & Biszko, K. (2023). Estimation of Vehicle Energy Consumption at Intersections Using Microscopic Traffic Models. Energies, 16(1), 233. https://doi.org/10.3390/en16010233
56. Oskarbski, J., Kamiński, T., Kyamakya, K., Chedjou, J. C., Żarski, K., & Pędzierska, M. (2020). Assessment of the speed management impact on road traffic safety on the sections of motorways and expressways using simulation methods. Sensors, 20(18), 5057. https://doi.org/10.3390/s20185057
57. Otković, I. I., Deluka-Tibljaš, A., & Šurdonja, S. (2020). Validation of the calibration methodolo-gy of the micro-simulation traffic model. Transportation Research Procedia, 45, 684–691. https://doi.org/10.1016/j.trpro.2020.02.110
58. PIARC (2004). Road Safety Manual. World Road Association PIARC, Paris.
59. PTV Group (2022). PTV Vissim 2022 User Manual. PTV Planung Transport Verkehr GmbH, Haid-und-Neu-Str. 1, 76131 Karlsruhe, Germany.
60. Rakha, H., & Gao, Y. (2010). Calibration of steady-state car-following models using macroscop-ic loop detector data. Final Report (Report No. VT-2008-01, 24). Virginia Tech Transportation Institute. https://www.mautc.psu.edu/docs/VT-2008-01.pdf
61. Ritchie, H., Roser, M., & Rosado, P. (2024). Energy Production and Consumption. Our World In Data. First published in July 2020 and last revised in January 2024. Retrieved November 7 from https://ourworldindata.org/energy-production-consumption
62. Roselló, X., Langeland, A., & Viti, F. (2016). Public Transport in the Era of ITS: The Role of Public Transport in Sustainable Cities and Regions. In Gentile, G., Noekel, K. (Eds.), Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems. Springer Tracts on Transportation and Traffic, 3-27. Cham: Springer. https://doi.org/10.1007/978-3-319-25082-3_4
63. Shah, D., Lee, C., & Kim, Y. H. (2023). Modified Gipps model: a collision-free car following model. Journal of Intelligent Transportation Systems, 1–14. https://doi.org/10.1080/15472450.2023.2289149
64. Shang, M., Rosenblad, B., & Stern, R. (2022). A novel asymmetric car following model for driv-er-assist enabled vehicle dynamics. IEEE Transactions on Intelligent Transportation Systems, 23(9), 15696–15706. https://doi.org/10.1109/TITS.2022.3145292
65. Si, Z., Hossain, M. A., & Tanimoto, J. (2023). An improved microscopic traffic model for heter-ogeneous vehicles using the vehicle’s mass effect. Heliyon, 9(6), e16731. https://doi.org/10.1016/j.heliyon.2023.e16731
66. Sider, T. M. N., Alam, A., Farrell, W., Hatzopoulou, M., & Eluru, N. (2014). Evaluating vehicular emissions with an integrated mesoscopic and microscopic traffic simulation. Canadian Journal of Civil Engineering, 41(10), 856–868. https://doi.org/10.1139/cjce-2013-0536
67. Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’Agosto, M., Dimitriu, D., Meza, M. J. F., Fulton, L., Kobayashi, S. O. L., McKinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., & Tiwari, G. (2014). Chapter 8: Transport. In Edenhofer,O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., & Minx, J. C. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth As-sessment Report of the Intergovernmental Panel on Climate Change, 599–670. Cambridge Uni-versity Press, Cambridge, United Kingdom and New York, NY, USA.
68. Singh, R., & Dowling, R. (1999). Improved speed-flow relationships: Application to transporta-tion planning models. In Donnely, R. (Ed.), Proceedings of the Seventh TRB Conference on the Application of Transportation Planning Methods, 340–349. TRB. https://onlinepubs.trb.org/onlinepubs/trispdfs/00939750.pdf
69. Sivakumar, A. (2007). Modelling transport: A Synthesis of Transport Modelling Methodologies. Lonon, UK: Imperial College London.
70. Small, M., Jordan, P., Anyala, M., Shelton, D., & Stapleton, R. (2023). Assessing The Maturity Of National Road Safety Management Systems. ADB Sustainable Development Working Paper Se-ries ( Paper No. 85). https://dx.doi.org/10.22617/WPS230159-2
71. Smit, R., Smokers, R., & Rabe, E. (2007). A new modelling approach for road traffic emissions: VERSIT+. Transportation Research Part D: Transport and Environment, 12(6), 414–422. http://dx.doi.org/10.1016/j.trd.2007.05.001
72. Szarata, A., Ostaszewski, P., & Mirzahossein, H. (2023). Simulating the impact of autonomous vehicles (AVs) on intersections traffic conditions using TRANSYT and PTV Vissim. Innovative Infrastructure Solutions, 8(6), 164. https://doi.org/10.1007/s41062-023-01132-7
73. Tak, S., Kim, S., Lee, D., & Yeo, H. (2018). A comparison analysis of surrogate safety measures with car-following perspectives for advanced driver assistance system. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/8040815
74. Transport Infrastructure Ireland. (2023). Project Appraisal Guidelines Unit 5.1 – Construction of Transport Models (Publication No. PE-PAG-02015). https://www.tiipublications.ie/library/PE-PAG-02015-02.pdf
75. United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Develop-ment. Resolution Adopted by the General Assembly on 25 September 2015. (Resolution No. A/RES/70/1). General Assembly of the United Nations. https://documents.un.org/doc/undoc/gen/n15/291/89/pdf/n1529189.pdf
76. United States Environmental Protection Agency (2002). Methodology for Developing Modal Emission Rates for EPA’s Multi-Scale Motor Vehicle and Equipment Emission System (Report. No. EPA420-P-02-027). United States EPA. https://nepis.epa.gov/Exe/ZyPDF.cgi/P10022SD.PDF?Dockey=P10022SD.PDF
77. Wang, L., Abdel-Aty, M., Wang, X., & Yu, R. (2018). Analysis and comparison of safety models using average daily, average hourly, and microscopic traffic. Accident Analysis and Prevention, 111, 271–279. https://doi.org/10.1016/j.aap.2017.12.007
78. Wang, W. H., Zhang, W., Li, D. H., Hirahara, K., & Ikeuchi, K. (2004). Improved action point model in Traffic flow based on driver’s cognitive mechanism. 2004 IEEE Intelligent Vehicles Symposium; Parma, Italy, June 14-17, 447–452. https://doi.org/10.1109/ivs.2004.1336425
79. Wang, Y., Wang, Z., Han, K., Tiwari, P., & Work, D. B. (2022). Gaussian Process-Based Person-alized Adaptive Cruise Control. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21178–21189. https://doi.org/10.1109/TITS.2022.3174042
80. Wefering, F., Rupprecht, S., Bührmann, S., Böhler-Baedeker, S., Granberg, M., Vilkuna, J., Saarinen, S., Backhaus, W., Laubenheimer, M., Lindenau, M., Vanegmond, P., & Wegeler, G. (2014). Guidelines for developing and Implementing a Sustainable Urban Mobility Plan. Europe-an Commission.
81. Wiedemann, R. (1974). Simulation des Strassenverkehrsflusses (in German). Schtiftenreibe des Institus fur Verkehrswesen der Universitat Karlsruhe.
82. Wiedemann, R., & Reiter, U. (1992). Microscopic traffic simulation: the simulation system MIS-SION, background and actual state. In Brackstone, M.A., & McDonald, M., CEC project ICARUS (V1052) Final report (2, appendix A). Brussels: CEC.
83. Xin, W., Hourdos, J., & Michalopoulos, P. (2008). Enhanced Micro-Simulation Models for Accu-rate Safety Assessment of Traffic Management ITS Solutions. Final Report (Report No. CTS 08-17). Department of Civil Engineering, University of Minnesota. https://cts-d8resmod-prd.oit.umn.edu/pdf/cts-08-17.pdf
84. Yan, X., Abdel-Aty, M., Radwan, E., Wang, X., & Chilakapati, P. (2008). Validating a driving simulator using surrogate safety measures. Accident Analysis and Prevention, 40(1), 274–288. https://doi.org/10.1016/j.aap.2007.06.007
85. Zhang, T. T., Jin, P. J., McQuade, S. T., Bayen, A., & Piccoli, B. (2024). Car-Following Models: A Multidisciplinary Review. ArXivLabs, ArXiv:2304.07143v4. http://arxiv.org/abs/2304.07143
86. Zhou, Z., Li, L., Qu, X., & Ran, B. (2024). A self-adaptive IDM car-following strategy consider-ing asymptotic stability and damping characteristics. Physica A: Statistical Mechanics and Its Ap-plications, 637, 129539. https://doi.org/10.1016/j.physa.2024.129539
87. Zou, H., Zhu, S., Jiang, R., Chen, Q., Wu, J., Wang, P., & Diao, C. (2023). Traffic conflicts in the lane-switching sections at highway reconstruction zones. Journal of Safety Research, 84, 280–289. https://doi.org/10.1016/j.jsr.2022.11.004
Downloads
Published
Data Availability Statement
The data from city ITS system is partially shared within city open data (https://otwartedane.gdynia.pl/), parts of data not openly available can be accesed upon request to the municipality.
Issue
Section
License
Copyright (c) 2024 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.
This work is licensed under a Creative Commons Attribution 4.0 International License.