The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works
DOI:
https://doi.org/10.5604/01.3001.0012.6512Keywords:
track geometry, phenomenological modeling, track unevenness, uniform subsidence, inhomogeneous subgrade, tamping worksAbstract
The given article considers the method of calculating the track geometry deformation with respect to uneven accumulation of residual deformations along the track. The technique proposes two significant changes in existing approaches to calculating the efficiency of the ballast layer. The transition from the approach of allowable stresses design in the ballast layer to the deformative approach of accumulations of track geometry deformations allows us to draw conclusions regarding the intervals of track tamping and the duration of ballast layer life cycle. The transition from the determinative to probabilistic approaches makes it possible to draw conclusions not only from the average unevenness, but also with regard to all possible facts of unevenness. The method is based on the mechanism of sudden and gradual deformations occurrence, which depends on a number of key factors: dynamic stresses on the ballast, non-uniformity of track elasticity, performance of current maintenance work. Based on the experimental studies results, the dependencies of sudden deformations and the intensity of gradual deformations on the level of stress on the ballast layer were established. The experimental results of the influence of the subballast base elasticity on the intensity of accumulation of residual deformations are shown. On the basis of the developed method, the prediction of track geometry deterioration for a given structure of the track, the rolling stock and the permissible level of geometric deviations for track maintenance is presented.
References
FRÖHLING, R., 1997. Deterioration of railway track due to dynamic vehicle loading and spatially varying track stiffness. PhD. University of Pretoria, 1997.
GUÉRIN, N., SAB, K., MOUCHERONT, P., 1999. Identification expérimentale d’une loi de tassement du ballast. Can. Geotech, 36(3), pp. 523-532.
SATO, Y., 1995. Japanese studies on deterioration of ballasted track, Vehicle System Dynamics, 24, pp. 197-208.
SHENTON, M., 1995. Ballast deformation and track deterioration. Proceedings of a Conference by the Institution of Civil Engineers. University of Nottingham, London, Thomas Telford, pp. 253-265.
LYSYUK, V., SAZONOV, V., BASH-KATOVA, L., 2003. A strong and reliable rail-way track. Moscow.: Akademkniga, pp. 62-68.
HOLZFEIND, J. HUMMITZSCH, R., 2010. Qualitätsverhalten von Gleisen – Effekte von Neulage und Instandhaltung. ZEVrail, 5(134), pp. 182-191.
HOLZFEIND, J., HUMMITZSCH, R., 2010. Zur Prognostizierbarkeit des Qualitätsverhaltens von Gleisen. Eisenbahningenieur, 8, pp. 32-40.
GERBER, U. FENGLER, W., 2010. Setzungsverhalten des Schotters. Eisenbahntechnische Rundschau, 4, pp. 170-175.
NIELSEN, J., LI, X., 2018. Railway track geometry degradation due to differential settlement of ballast/subgrade – Numerical prediction by an iterative procedure. Journal of Sound and Vibration, 412, pp. 441-456. doi.org/10.1016/j.jsv.2017.10.005.
NISHIURA, D., SAKAI, H., AIKAWA, A., TSUZUKI, S., SAKAGUCHI, H., 2018. Novel discrete element modeling coupled with finite element method for investigating ballasted rail-way track dynamics. Computers and Geotechnics, 96, pp. 40-54. doi.org/10.1016/j.compgeo.2017.10.011.
HETTLER, A., 1984. Bleibende Setzungen des Schotteroberbaus. Eisenbahntechnische Rundschau, 33, pp. 847-854.
LICHTBERGER, B., 2003. Handbuch Gleis: Unterbau, Oberbau, Instandhaltung, Wirtschaftlichkeit. Hamburg: Tetzlaff Verlag, pp. 43-46.
HOLTZENDORFF, K., 2003. Untersuchung des Setzungsverhaltens von Bahnschotter und der Hohllagenentwicklung auf Schotterfahrbahnen. PhD. Technische Universität Berlin.
HORVAT, F., KISS, F., 2006. Streckenbewirtschaftung in Relation von Gleislagequalitat zu Traktionsenergieverbrauch. Eisenbahntechnische Rundschau, 11, pp. 798-805.
POPP, K., SCHIEHLEN, W., 2003. System Dynamics and Long-Term Behavior of Railway Vehicles, Track and Subgrade (Lecture Notes in Applied Mechanics; Vol. 6). Berlin-Heidelberg: Springer Verlag.
UMANOV, M., 2007. Research and development of recommendations for determining the effectiveness of dynamic stabilizers of various structures during the modernization of the track on long-term closed lines. Report № 23/07 ЦТех – 451/07, № 0107U005237. Dnipropetrovsk: DNUZT.
SYSYN, М., GERBER, U., RYBKIN, V., NABOCHENKO, О., 2010. Determination of the ballast layer degree compaction with dynamic and kinematic analysis of the acoustic waves impacts. Sborník přednášek. Železniční Dopravní Cesta. VOŠ a SPŠ stavební. Děčín: 17.-18. února 2010. pp. 123-130.
VERIGO, M., YERSHKOV, O., POPOV, S., HEYVESTER. B., 1955. Railway track and rolling stock interaction and calculation issues. Reports of VNIIZHT, issue. 97. Moscow.: Transgzheldorisdat.
KOVALCHUK, V., KOVALCHUK, Y., SYSYN, M., STANKEVYCH, V., PETRENKO, O., 2018. Estimation of carrying capacity of metallic corrugated structures of the type multiplate mp 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies. Kharkov: 1/1 (91), pp.18 – 26, doi: 10.15587/17294061.2018.123002.
VEIT, P., 2006. Qualitat im Gleis – Luxus oder Notwendigkeit?. Eisenbahningenieur, 12 (57), pp. 32-37.
SELIG, E., 1998. Ballast Performance: Considering more key factors. Railway Track and Structures, 94(7), pp. 17-20, 36.
DANILENKO, E., RYBKIN, V., 2006. Rules of railway track calculations for durability and stability (TSP/0117). Kyiv: Transport.
PROKUDIN, I., GRACHEV, I., KOLOS, A., 2005. Organization of the reconstruction of rail-ways for high-speed train traffic. Moscow: Marshrut, pp. 245-248.
SYSYN, M., 2008. Influence of physical and geometrical characteristics of the railway track on its stress-strain state. PhD. Dnipropetrovsk National University of Railway Transport.
FISCHER, S., 2017. Breakage Test of Railway Ballast Materials with New Laboratory Method. Periodica Polytechnica Civil Engineering, 61 (4), pp. 794–802, doi.org/10.3311/PPci.8549.
GUDEHUS, G., 1998. Entstehung und Bewältigung von Gleisbettwellen. Baugrundtagung 1998, Stuttgart: DGGT, pp.457-463.
GUERRIERI, M., PARLA, G., 2013. A new high-efficiency procedure for aggregate gradation determination of the railway ballast by means image recognition method. Archives of civil engineering, LIX, 4, 2013. DOI: 10.2478/ace-2013-0025.
DROŹDZIEL, J., SOWIŃSKI, B., 2010. Method of track vertical stiffness estimation based on experiment. Archives of transport, 22(2), pp. 153-162.
WIECZOREK, S., PAŁKA, K., GRABOWSKA-BUJNA, B., 2018. A model of strategic safety management in railway transport based on Jastrzebska Railway Company Ltd. Scientific Journal of Silesian University of Technology. Series Transport. 2018, 98, 201-210. ISSN: 0209-3324. DOI: https://doi.org/10.20858/sjsutst.2018.98.19.
MIGUEL, A., LAU, A., SANTOS, I., 2018. Numerical simulation of track settlements based on an iterative holistic approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40:381, https://doi.org/10.1007/s40430-018-1300-8.
SOLEIMANMEIGOUNI, I., AHMADI, A., KHOUY, I., LETOT, C., 2016. Evaluation of the effect of tamping on the track geometry condition: a case study. Proc IMechE Part F: J Rail and Rapid Transit, Vol. 232(2) 408-420. DOI: 10.1177/0954409716671548.
GROSSONI, I., ANDRADE, A., BEZIN, Y., NEVES, S., 2018. The role of track stiffness and its spatial variability on long-term track quality deterioration. Proc IMechE Part F: J Rail and Rapid Transit 0(0) 1–17. DOI: 10.1177/0954409718777372.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.
This work is licensed under a Creative Commons Attribution 4.0 International License.