Reduction of CO2 emission as a result of the use of 48-volt electrical installations in passenger cars

Authors

  • Jacej Kozyra Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities, Radom Author https://orcid.org/0000-0002-6660-6713
  • Zbigniew Łukasik Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities, Radom Author
  • Aldona Kuśmińska-Fijałkowska Faculty of Transport, Electrical Engineering and Computer Science, University of Technology and Humanities, Radom Author https://orcid.org/0000-0002-9466-1031
  • Aleš Janota Faculty of Electrical Engineering and Information Technology, University of Žilina, Žilina Author https://orcid.org/0000-0003-2132-1295

DOI:

https://doi.org/10.5604/01.3001.0016.3124

Keywords:

passenger vehicles, motor-generator, converter, CO2 reduction, fuel consumption reduction

Abstract

The introduction of a new standard of 48-volt electrical systems in cars comes at an additional cost to the vehicle. Acceptance of these costs is justified because it becomes a way to achieve lower CO2 emissions and lower fuel consumption. An important factor in favor of adopting 48-volt systems is the reduction in CO2 due to the use of a highly efficient 48-volt motor-generator unit coupled to a DC/DC converter. A methodology for testing new solutions to quantify CO2 savings and reductions therefore becomes crucial. This methodology must be capable of demonstrating the CO2 benefits primarily of the innovative technology proven in real-world driving conditions and with a large amount of realistic statistical data. The introduction of new eco-innovations must take into account the linkage and impact on other environmentally oriented ecoinnovative solutions. When implementing new technical solutions, a necessary aspect is the interaction with other innovations installed in vehicles with new electrical installation standards. Therefore, for the expected synergy of solutions to occur, two or more innovative technologies must be installed. Then the combined savings from one of them will affect the performance of the other technologies, and vice versa. The new technology of a high-efficiency 48-volt motor-generator unit cooperating with a 48V/12V DC/DC converter fits very well in creating interactions with other implemented solutions aimed at reducing CO2 emissions. The article discusses the problems of the introduced new technology of a high-efficiency 48-volt motor-generator unit cooperating with a 48V/12V DC/DC converter. The publication analyzes the impact of in creasing the voltage rating of current passenger car installations to 48V. Based on the methodology for determining the reduction of CO2 emissions of a vehicle with a 48V/12V DC/DC voltage converter installed, the mass of fuel per unit of engine operation time was determined. The amount of fuel saved was determined, and CO2 emission reductions were calculated for the three adopted passenger vehicles tested.

References

Abdellahi, A., Khaleghi, R.S., Blizanac, B., Sisk, B., (2017). Exploring the Opportunity Space For High-Power Li-Ion Batteries in Next-Generation 48V Mild Hybrid Electric Vehicles, SAE Technical Paper 2017-01-1197, 2017. DOI: 10.4271/2017-01-1197.

ADCID, 2020. Methodology to determine the CO2 savings of the technology used in a 48 Volt efficient motor generator combined with a 48 Volt/12 Volt DC/DC converter for conventional combustion engine and certain hybrid electric passenger cars and light commercial vehicles. (2020). Annex Decisions Commission Implementing Decision (EU) 2020/1167.

Bilo, J., et al. (2016). 48-Volt Electrical Systems. Frankfurt am Main, Germany: ZVEI.

CIR EU, 2011. Commission Implementing Regulation (EU) No 725/2011of 25 July 2011 establishing a procedure for the approval and certification of innovative technologies for reducing CO2 emissions from passenger cars pursuant to Regulation (EC) No 443/2009 of the European Parliament and of the Council.

CIR EU, 2014. Commission Implementing Regulation (EU) No 427/2014of 25 April 2014 establishing a procedure for the approval and certification of innovative technologies for reducing CO2 emissions from light commercial vehicles pursuant to Regulation (EU) No 510/2011 of the European Parliament and of the Council.

CR EU, 2017. Commission Regulation (EU) 2017/1154 of 7 June 2017 amending Regulation (EU) 2017/1151 supplementing Regulation (EC)No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008.

Das, R., (2014). Pi Controlled Bi-Directional Dc-Dc Converter And Higly Efficient Boost Converter For Electric Vehicle. International Islamic University Chittagong.

DC/DC converters, 2019. DC/DC converters in transport applications, August 21, 2019. RECOM Power GmbH, https:/recompower.com.

DCID EU, 2020. Decisions Commission Implementing Decision (EU) 2020/1167of 6 August 2020 on the approval of the technology used in a 48 Volt efficient motor-generator combined with a 48 Volt/12 Volt DC/DC converter for use in conventional combustion engine and certain hybrid electric passenger cars and light commercial vehicles as an innovative technology pursuant to Regulation (EU) 2019/631 of the European Parliament and of the Council).

Do, H-L., (2012). Improved ZVS DC-DC Converter With a High Voltage Gain and a Ripple Free Input Current, IEEE Transactions on Circuits and Systems I: Regular Papers, 59(4), 846-853. DOI: 10.1109/TCSI.2011.2169741.

ECE/TRANS, 2014. Global technical regulation on Worldwide harmonized Light vehicles Test Procedure, ECE/TRANS/180/Add.15, Established in the Global Registry on 12 March 2014.

Hall, J., Borman, S., Hibberd, B., Bassett, M., et al., (2020). 48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains, SAE Int. J. Adv. & Curr. Prac. in Mobility 2(4):1893- 1904. DOI: 10.4271/2020-01-0441.

Horn, R., (2020). Using specialised power converters to bridge the dual 12v to 48v gap in automotive systems. Electronic Product Design & Test Magazin. ISSN 0263-1474.

Hu, B., Chen, C., Zhan, Z., et al., (2018). Pro gress and recent trends in 48 V hybridisation and e-boosting technology on passenger vehicles – a review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(11), 1543-1561. DOI: 10.1177/0954407017729950.

ISO 8854:2012, 2012. ISO 8854:2012 - Road vehicles-Alternators with regulators-Test methods and general requirements.

Jankowski, K., (2012). Problemy bezpieczeństwa porażeniowego we współczesnych samochodowych instalacjach elektrycznych. XVI Konferencja - Komputerowe systemy wspomagania nauki, przemysłu i transportu - Transcomp 2012, Zakopane, 3-6.12.2012, Technika Transportu Szynowego, 9/2012 2515-2520.

Jankowski, K., (2017). Straty mocy i przekroje przewodów w 48V samochodowych instalacjach elektrycznych. Autobusy: technika, eksploatacja, systemy transportowe, 18(12), 915-918.

Jankowski, K., (2017). Wpływ wartości napięcia znamionowego na konstrukcję instalacji elektrycznych samochodów ciężarowych i autobusów. I Konferencja naukowo - techniczna „Truck & Bus – Nowoczesny samochód ciężarowy i autobus”, Radom, 24-25. 10.2007, 71-77.

Jankowski, K., Zbrowski, A., (2014). Electric shock safety In automotive electrical systems. Czasopismo Techniczne Mechanika, 1-M(4), 111, 33-39.

Jankowski, K.,. (2009). Wpływ wartości napięcia znamionowego na konstrukcję instalacji elektrycznych autobusów. Autobusy, 3/2009, 18-19.

Kumawat, A.K., Thakur, A.K., (2017). A comprehensive study of automotive 48-volt tech nology. International Journal of Mechanical Engineering. 4(5), 13-20.

Kuypers, M., (2014). Application of 48 Volt for Mild Hybrid Vehicles and High Power Loads. SAE paper 2014-01-1790. DOI: 10.4271/2014-01-1790.

Leach, J., Automotive 48-Volt Technology. SAE International, 2016.

Lodi, C., Serra, S., Currò, D., Gil-Sayas, S., Marotta, A., et al. (2022). Eco-innovative technologies reducing CO2 emissions of light-duty vehicles: evaluation of interactions. ISBN 978- 92-76-45461-8, ISSN 1018-5593. DOI: 10.2760/86427, Publications Office of the European Union.

Łukasik, Z., Kozyra, J., Kuśmińska-Fijałkowska, A., (2021). Reduction of CO2 Through Application of the High-Performance Alternator. Transport Problems, 16(2), 179-188. DOI: 10.21307/tp-2021-033.

LV, 148. LV 148, Electric and Electronic Components for Vehicles with a 48V Electrical System Test Conditions and Tests.

Odyssee-mure, 2022. www.odyssee-mure.eu, access date: [16.03.2022].

Olin, P., Aggoune, K., Tang, L., Confer, K., et al. (2019). Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control, SAE Technical Paper 2019-01-1213. DOI: 10.4271/2019-01-1213.

PN-85/S-76001, 1985. PN-85/S-76001 - Pojazdy silnikowe. Wyposażenie elektryczne. Ogólne wymagania i badania.

Shang, F., Niu, G., Krishnamurthy, M., (2017). Design and Analysis of a High-Voltage-Gain Step-Up Resonant DC–DC Converter for Transportation Applications. IEEE Transactions on Transportation Electrification, 3(1), 157-167. DOI: 10.1109/TTE.2017.2656145.

Smith, D., et al. (2020). Medium-and heavy duty vehicle electrification: An assessment of technology and knowledge gaps. No. ORNL/SPR-2020/7. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States).

Spessa, E., Malvicino, D. C., Solinas, M. R., Milan, C. M., (2018). Evaluation of the Potential of Low-Voltage Electrification Technologies for CO2 Reduction. Master of Science in Mechanical Engineering Department of Mechanical and Aerospace Engineering, FCA, Turin.

Zhao, N., (2017). Modelling and design of electric machines and associated components for more electric vehicles (Doctoral dissertation).

Downloads

Published

2023-06-30

Issue

Section

Original articles

How to Cite

Kozyra, J., Łukasik, Z., Kuśmińska-Fijałkowska, A., & Janota, A. (2023). Reduction of CO2 emission as a result of the use of 48-volt electrical installations in passenger cars. Archives of Transport, 66(2), 7-20. https://doi.org/10.5604/01.3001.0016.3124

Share

Most read articles by the same author(s)

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

Similar Articles

1-10 of 206

You may also start an advanced similarity search for this article.

No Related Submission Found