Finite element analysis of pantograph-catenary dynamic interaction
DOI:
https://doi.org/10.5604/08669546.1225451Keywords:
pantograph, catenary, interaction, EN 50318, FEMAbstract
Numerical simulations of the pantograph-catenary dynamic interaction allow for assessment of the current collection quality provided by this subsystem at the design stage of the pantograph or the catenary system. In this paper, the authors present numerical results of simulations of the dynamic interaction between a pantograph and a catenary. Adopted catenary and pantograph models are consistent with the reference model presented in the EN 50318:2002 document, which describes the validation procedure of the simulation for the dynamic interaction between pantograph and overhead contact line. Authors have used the Finite Element Method to analyze this complex system. Ten catenary spans of simple catenary (one messenger wire and one contact wire) are modelled, each of them is 60m long. The pre-sag of the catenary is 0mm and the model of the catenary includes the stagger which equals ±200mm. The pantograph model consists of lumped masses which are connected each other with spring-damper elements. First, the static initial configuration is obtained (under gravity and tensioning loads), after which the dynamic transient simulation is conducted. Obtained results for the contact force and uplifts at supports are within the reference ranges presented in the EN 50318:2002 document, therefore it can be considered that the adopted model correctly reproduces the dynamic behaviour of the pantograph-catenary dynamic interaction.
References
AMBRÓSIO, J., RAUTER, F., POMBO, J. and PEREIRA, M., 2011. A flexible multibody pantograph model for the analysis of the catenary–pantograph contact. In Multibody Dynamics (pp. 1-28). Barcelona: Springer.
AMBRÓSIO, J., POMBO, J., PEREIRA, M., ANTUNES, P. and MÓSCA, A., 2012a. A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high speed trains. Journal of Theoretical and Applied Mechanics, 50 , pp. 681-699.
AMBRÓSIO, J., POMBO, J., PEREIRA, M., ANTUNES, P. and MÓSCA, A., 2012b. Recent
developments in pantograph-catenary interaction modelling and analysis. International Journal of Railway Technology 1, pp. 249-278.
BRUNI, S., AMBROSIO, J., CARNICERO, A., CHO, Y., FINNER, L., IKEDA, M., et al., 2015. The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics 53 , pp. 412-435.
BUCCA, G. and COLLINA, A., 2009. A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system. Wear 266 , pp. 46-59.
CARNICERO, A., JIMENEZ-OCTAVIO, J., SUCH, M., RAMOS, A. and SANCHEZ-REBOLLO, C., 2011. Influence of static and dynamics on high performance catenary designs. International Conference on Pantograph Catenary Interaction Framework for Intelligent Control - PACIFIC 2011, Amiens, 8 December 2011.
CHO, Y., 2015. SPOPS statement of methods. Vehicle System Dynamics 53 , pp. 329-340.
EN50318., 2002. EN 50318:2002 Validation of simulation of the dynamic interaction between pantograph and overhead contact line.
FACCHINETTI, A. and BRUNI, S., 2012. Hardware-in-the-loop hybrid simulation of pantograph-catenary interaction. Journal of Sound and Vibration 331 , pp. 2783-2797.
GRAJNERT, J., 1978. Wpływ niektórych parametrów odbieraka prądu na siłę stykową. Pojazdy Szynowe 4.
IKEDA, M., 2015. ‘Gasen-do FE’ statement of methods. Vehicle System Dynamics 53 , pp. 357-369.
JIMENEZ-OCTAVIO, J., SUCH, M. and LOPEZ-GARCIA, O., 2008. Validation of simulation approaches for catenary-pantograph dynamics. (B. Topping and M. Papadrakakis, Eds.) Ninth International Conference on Computational Structures Technology, Paper 188, Athens, 2-5 September 2008.
JIMENEZ-OCTAVIO, J., CARNICERO, A., SANCHEZ-REBOLLO, C. and SUCH, M., 2015. A moving mesh method to deal with cable structures subjected to moving loads and its application to the catenary-pantograph dynamic interaction. Journal of Sound and Vibration 349 , pp. 216-229.
JÖNSSON, P., STICHEL, S. and NILSSON, C., 2015. CaPaSIM statement of method. Vehicle System Dynamics, 53 , pp. 341-346.
KANIEWSKI, M., 2013. Model matematyczny odbieraka prądu i sieci jezdnej. Prace Naukowe Politechniki Warszawskiej. Transport, 95 , pp. 209-220.
KIA, S., BARTOLINI, F., MPANDA-MABWE, A. and CESCHI, R., 2010. Pantograph-catenary interaction model comparison. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale AZ, 7-10 November 2010.
KOBIELSKI, A., 1985. Wpływ aproksymacji sztywności sieci trakcyjnej na siłę stykową. Trakcja i Wagony 1.
KUMANIECKA, A. and SNAMINA, J., 2008. Dynamics of the catenary modelled by a periodical structure. Journal of Theoretical and Applied Mechanics, 46 , pp. 869-878.
LOPEZ-GARCIA, O., CARNICERO, A. and TORRES, V., 2006. Computation of the initial equilibrium of railway overheads based on the catenary equation. Engineering Structures, 28 , pp. 1387-1394.
LOPEZ-GARCIA, O., CARNICERO, A. and MARONO, J., 2007. Influence of stiffness and contact modelling on catenary–pa ntograph syste m dynamics. Journal of Sound and Vibration, 299 , pp. 806-821.
MASSAT, J., LAURENT, C., BIANCHI, J. and BALMÈS, E., 2014. Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Vehicle System Dynamics, 52 , pp. 338-354.
MSC.Nastran., 2014. Nonlinear User’s Guide SOL400.
MSC.Nastran., 2004. Reference Manual.
NÅVIK, P. and RØNNQUIST, A., 2014. Dynamic Optimization of an Existing Catenary System when Exceeding Design Speed. (J. Pombo, Ed.) Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance , Paper 138, Ajaccio, 8-11 April 2014.
POETSCH, G., EVANS, J., MEISINGER, R., KORTUM, W., BALDAUF, W., VEITL, J., et al., 1997. Pantograph/catenary dynamics and control. Vehicle System Dynamics, 28, pp. 159-195.
POMBO, J. and AMBROSIO, J., 2012. Multiple Pantograph Interaction With Catenaries in High-Speed Trains. Journal of Computational and Nonlinear Dynamics, 7(4).
SOWIŃSKI, B., 2003. Some numerical aspects of rail waytrack vehicle-track mechanical system simulation. Archives of Transport, 16(2), pp. 95-108.
SOWIŃSKI, B., 2006. Approximated Methods of Solving of Transient Vibrations of a Railway Track Mathematical Model. Archives of Transport,18(1), pp. 87-101.
UHL, T., PIECZARA, J., 2003. Identification of operational loading forces for mechanical structures. Archives of Transport, 16(2), pp.109-126.
WU, T. and BRENNAN, M., 1997. Analytical Study of Pantograph-Catenary System Dynamics. ISCR Technical Memorandum No.819.
WU, T. and BRENNAN, M., 1999. Dynamic Stiffness of a Railway Overhead Wire System and its Effect on Pantograph-Catenary System Dynamics. Journal of Sound and Vibration, 219.
ZDZIEBKO, P. and UHL, T., 2016. The Use of the Modal Superposition Method in Simulating Pantograph-Catenary Dynamic Interaction. (J. Pombo, Ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Paper 104, Cagliari, 5-8 April 2016.
ZHOU, N. and ZHANG, W., 2011. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system. Finite Elements in Analysis and Design, 47 , pp. 288-295.
Published
Issue
Section
License
Copyright (c) 2024 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.
This work is licensed under a Creative Commons Attribution 4.0 International License.