Modelling and analysis of selected platform dynamics issues of a land robot

Authors

DOI:

https://doi.org/10.61089/aot2024.hgejtx19

Keywords:

six-wheeled robot, unmanned ground robot, model

Abstract

The research object is a land robot designed to perform special tasks. One of the robot's elements is a six-wheeled platform with independent suspension. The platform allows the robot to move on land and overcome obstacles. Any equipment enabling the robot to perform planned tasks can be mounted on it. If the implementation of the mission requires the platform to move in uneven terrain, external forces are generated resulting from the platform's wheels overcoming uneven road surfaces. Disturbances occurring in the system may negatively affect the measuring and actuating devices mounted on the platform. Actuator devices may also cause additional excitations. This may lead to disruptions in the process of the land robot carrying out its intended work. The aim of the work is to analyse selected dynamics issues with particular emphasis on the modal analysis of the land robot platform and, on this basis, to check the correctness of its design. In order to carry out the tasks set, a physical and mathematical model of the platform was developed. The energy method was used to derive the analytical relationships, which requires the determination of the kinetic energy, the potential energy, the dissipative Rayleigh function and external non-potential forces. A modal analysis was carried out to determine the dynamic parameters of the system and its susceptibility to the generated excitations was determined. The considerations carried out allow for the design of a structure that improves comfort for the actuating devices. Thanks to the developed model, it is possible to select the values and distribution of system parameters in such a way as to exclude the phenomenon of beating and resonance. In the general case, the robot's basic motion is coupled to the disturbances generated in the system. That's why the considerations carried out in this paper are so important, which enable the development of robot platform dynamics that minimize the impacts on the robot's realized fundamental motion.

References

1. Zhang, H., Liang, H., Tao, X., et al. (2021). Driving Force Distribution and Control for Maneuverability and Stability of a 6WD Skid-Steering EUGV with Independent Drive Motors. Applied Sciences, 11(3), 961, 2-21. https://doi.org/10.3390/app11030961

2. Ahmed, M., El-Gindy, M., Lang, H., Omar, M. (2020). Development of Active Rear Axles Steering Controller For 8X8 Combat Vehicle, SAE Technical Paper, 2020-01-0174,2020. https://doi.org/10.4271/2020-01-0174

3. Shuai, Z., Li, Ch., Gai, J., et al. (2019). Coordinated motion and powertrain control of a series-parallel hybrid 8 × 8 vehicle with electric wheels. Mechanical Systems and Signal Processing, 120, 560-583. https://doi:10.1016/j.ymssp.2018.10.033

4. D'urso, P., El-gindy, M. (2018). Development of control strategies of a multi-wheeled combat vehicle. International Journal of Automation and Control, 12.3, 325-360. https://doi:10.1504/IJAAC.2018.10012532

5. Kayacan, E., Ramon, H., Saeys, W. (2016). Robust trajectory tracking error model-based predictive control for unmanned ground vehicles. IEEE/ASME Transactions on Mechatronics, 21.2, 806-814. https://doi.org/10.1109/TMECH.2015.2492984

6. Khan, R., Fahat, M. M., Abid, R., Naveed, M. (2021). Comprehensive study of skid-steer wheeled mobile robots: Development and challenges. Industrial Robot: the international journal of robotics research and application, 48.1, 142-156. https://doi.org/10.1108/IR-04-2020-0082

7. Gupta, N., Ordonez, C., Collins, E. G. (2017). Dynamically feasible, energy efficient motion planning for skid-steered vehicles. Autonomous Robots, 41, 453-471. https://doi.org/10.1007/s10514-016-9550-8

8. Dogru, S., Marques, L. (2019). Power characterization of a skid-steered mobile field robot with an application to headland turn optimization. Journal of Intelligent & Robotic Systems, 93, 601-615. https://doi:10.1007/s10846-017-0771-7

9. Pentzer, J., Reichard, K., Brennan, S. (2016). Energy-based path planning for skid-steer vehicles operating in areas with mixed surface types. In: 2016 American control conference (ACC). IEEE, 2110-2115. https://doi.org/10.1109/ACC.2016.7525230

10. Pace, J., Harper, M., Ordonez, C., et al. (2017). Experimental verification of distance and energy optimal motion planning on a skid-steered platform. In: Unmanned Systems Technology XIX. SPIE, 51-58. http://dx.doi.org/10.1117/12.2262921

11. Ordonez, C., Gupta, N., Reese, B., et al. (2017). Learning of skid-steered kinematic and dynamic models for motion planning. Robotics and Autonomous Systems, 95 (2), 207-221. http://dx.doi.org/10.1016/j.robot.2017.05.014

12. Krishnamurthy, D. A. (2008). Modeling and simulation of skid steered robot pioneer 3at.Florida State University Libraries, Electronic Theses, Treatises and Dissertations. USA. http://rightsstatements.org/vocab/InC/1.0/

13. Goris, K. (2005). Autonomous mobile robot mechanical design. Vrije Universiteit Brussel, Engineering Degree Thesis, Brussels, Belgium. http://mech.vub.ac.be/multibody/final_works/ThesisKristofGoris.pdf

14. Siciliano, B., Khatib, O. (Eds.) (2008). Springer handbook of robotics. Berlin: Springer. https://doi:10.1007/978-3-319-32552-1

15. Shuang, G., Cheung, N. C., Cheng, K. W. E., al. (2007). Skid steering in 4-wheel-drive electric vehicle. In: 2007 7th International Conference on Power Electronics and Drive Systems. IEEE, 1548-1553. http://dx.doi.org/10.1109/PEDS.2007.4487913

16. Moreland, S., Skonieczny, A., Inotsume, H., Wettergreen, D. (2012). Soil behavior of wheels with grousers for planetary rovers. In: 2012 IEEE Aerospace Conference. 1-8. http://dx.doi.org/10.1109/AERO.2012.6187040

17. Skonieczny, K., Moreland, S.J., Wettergreen, D. (2012). grouser spacing equation for determining appropriate geometry of planetary rover wheels. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 5065-5070. http://dx.doi.org/10.1109/IROS.2012.6386203

18. Klockiewicz, Z., Ślaski, G. (2024). The effectiveness of damping for SkyHook control strategy depending on how realistic damper model is. Vibrations in Physical Systems - 2024, 35(1). https://doi:10.21008/j.0860-6897.2024.1.20.

19. Klockiewicz, Z., Ślaski, G. (2023). Comparison of Vehicle Suspension Dynamic Responses for Simplified and Advanced Adjustable Damper Models with Friction, Hysteresis and Actuation Delay for Different Comfort-Oriented Control Strategies. Acta Mechanica et Automatica-2023, 17(1), 1-15. https://doi:10.2478/ama-2023-0001

20. Mitschke, M., Wallentowitz, H. (2014). Dynamik der Kraftfahrzeuge. Springer-Verlag, Berlin-Heidelberg. ISBN 3658050683, 9783658050689.

21. Typiak, A. (2007). Bezzałogowe pojazdy lądowe w zastosowaniach militarnych. Pomiary Automatyka Robotyka (Unmanned land vehicles in military applications. Measurements Automation Robotics, Poland). 2/2007. http://www.par.pl/

22. Jarzębowska E. (2021). Dynamika i sterowanie układami mechanicznymi. (Dynamics and control of mechanical systems). PWN, Warszawa 2021, Poland. ISBN: 9788301219536.

23. Spong M.W., Vidyasagar M. (2024). Robot Dynamics and Control. Wiley India PvtLtd 2008. ISBN: 978-0-471-61243-8.

24. https://botland.com.pl/produkty-wycofane/6626-dfrobot-6wd-6-kolowe-podwozie-robota-z-napedem. html (Access from 2024.04.01).

25. https://www.antyterroryzm.com/robot-ibis-dla-kolejnych-placowek-stazy-granicznej-w-polsce/ (Access from 2024.04.01).

26. Osiecki J., Koruba Z. (2007). Elementy mechaniki zaawansowanej. Politechnika Świętokrzyska, Podręcznik akademicki (Elements of advanced mechanics. Kielce University of Technology. Academic textbook). Kielce. 2007. http://katalog.tu.kielce.pl/EOSWeb/OPAC/Search/AdvancedSearch.asp

27. Dziopa, Z. (2008). Modelowanie i badanie dynamicznych właściwości samobieżnych przeciwlotniczych zestawów rakietowych (Modeling and testing of dynamic properties of self-propelled anti-aircraft missile systems). Monografie, Studia, Rozprawy M9, Kielce University of Technology, Kielce, 2008, PL ISSN 1897-2691.

28. Misiak J. (2017). Mechanika techniczna, tom II Kinematyka i Dynamika. (Technical mechanics, volume II Kinematics and Dynamics.). Wydawnictwo Naukowe PWN, Warszawa 2017. Poland. ISBN/ISSN: 978-83-01-19113-9.

29. Hibbeler, R.C. (2010). Engineering mechanics, Dynamics, 12th edition. Published by Pearson Prentice Hall. Printed in the United States of America. ISBN -10: 0-13-60779 1-9.

30. Trojnacki, M. (2013). Modelowanie dynamiki mobilnych robotów kołowych. (Modeling the dynamics of mobile wheeled robots.). Monografia, Oficyna Wydawnicza PIAP, Warszawa 2013. Poland. ISSN 0033-2097.

31. Howle D., Krayterman D., Pritchett J.E., Sorenson R. (2017). Validating a Finite Element Model of a Structure Subjected to Mine Blast with Experimental Modal Analysis [Research Report].ARLTR-8224; Army Research Laboratory: Aberdeen, USA, 2017. AD1042331. https://apps.dtic.mil/sti/pdfs/AD1042331.pdf

32. Gres, S., Andersen, P., Hoen, C., Damkilde, L. (2018). Orthogonal projection-based harmonic signal removal for operating modal analysis. W: Structural Health Monitoring, Photogrammetry & DIC, Volume 6: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018. Springer International Publishing. 9-21. https://doi:10.1007/978-3-319-74476-6_2

33. Tang, S., Yuan, S., Li, X. and Zhou, J. (2020). Dynamic modeling and experimental validation of skid-steered wheeled vehicles with low-pressure pneumatic tires on soft terrain. Proceedings of the Institution of Mechanical Engineers. 840–856. https://doi.org/10.1177/0954407019847302

34. Mokhiamar, O., Amine, S. (2017). Lateral motion control of skid steering vehicles using the full drive-by-wire system. Alexandria Engineering Journal, 56(4). 383-394. https://doi.org/10.1016/j.aej.2017.03.024

35. Alghanim, M. N., Valavanis, K. P., Rutherford, M. J. (2019). Modeling, control, and wheel-terrain interaction dynamics of the UGV argo J5. 2019 18th European Control Conference (ECC), IEEE, 1116-1123. https://doi.org/10.23919/ECC.2019.8796270

36. Kang, J., Kim, W., Lee, J. Yi, K. (2010). Skid steering-Based control of a robotic vehicle with six in-wheel drives. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224, 1369-1391. https://doi.org/10.1243/09544070JAUTO1405

37. Goodin, C., Carrilllo J. T., McInnis, D. P., et al. (2017). Unmanned ground vehicle simulation with the virtual autonomous navigation environment. 2017 International Conference on Military Technologies (ICMT), IEEE, 160-165. https://doi.org/10.1109/MILTECHS.2017.7988748

38. Rivera, Z. B., De Simone, M.C., Guida, D. (2019). Unmanned Ground Vehicle Modelling in Gazebo/ROS-Based Environments. Machines, 7(2):42, 2-21. https://doi.org/10.3390/machines7020042

Downloads

Published

2024-12-31

Issue

Section

Original articles

How to Cite

Dziopa, Z., Zuska, A., & Więckowski, D. (2024). Modelling and analysis of selected platform dynamics issues of a land robot. Archives of Transport, 72(4), 23-41. https://doi.org/10.61089/aot2024.hgejtx19

Share

Most read articles by the same author(s)

<< < 42 43 44 45 46 47 48 > >> 

Similar Articles

1-10 of 244

You may also start an advanced similarity search for this article.

No Related Submission Found