Algebraic multigrid preconditioning for iterative eigensolvers
DOI:
https://doi.org/10.2478/v10174-010-0006-1Keywords:
vehicle dynamics, design theory, boundry-value problemsAbstract
The paper presents a comparative study of iterative solvers for eigen- problems, which arise e.g. in solid mechanics or structural analysis. We consider problems obtained by discretization of elliptic and self-adjoint partial differential operators. Typically, only a few of the smallest eigen- values of these problems are to be computed. We discuss various gradient based preconditioned eigensolvers which make use of algebraic multigrid preconditioning. We present algorithms together with numerical results. Performance characteristics are derived by a comparison with the solution of test problems. We show that known advantages of algebraic multigrid preconditioning (e.g. for boundary-value problems with large jumps in the coefficients) transfer to the eigensolvers considered here.
References
Arbenz P., Hetmaniuk V.L., Lehoucq R.B., Tuminaro R.S.: A comparison of eigensolvers for largescale 3D modal analysis using AMG- preconditioned iterative methods. Int. J. Numer. Methods Eng., 64(2): 204-236, 2005.
e. Bai Z., e. Demmel J., e. Dongarra J., e. Ruhe A., e. Van der Vorst H.: Templates for the solution of algebraic eigenvalue problems. A practical guide. Software - Environments - Tools. 11. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. XXIX, 410 p., 2000.
Borzl A., Borzl G.: Algebraic multigrid methods for solving generalized eigenvalue problems. Int. J. Numer. Methods Eng., 65(8): 1186-1196, 2006.
Gee M., Siefert c., Hu J., Tuminaro R., Sala M.: ML 5.0 smoothed aggregation user's guide. Technical Report SAND2006-2649, Sandia National Laboratories, 2006.
Hackbusch W.: Iterative solution of large sparse systems of equations. Transl. from the German. Applied Mathematical Sciences. 95. New York, NY: Springer-Verlag. XXI, 429 p. 1994.
Hetmaniuk V.L.: A Rayleigh quotient minimization algorithm based on algebraic multigrid. Numer. Linear Algebra Appl., 14: 563-580, 2007.
Knyazev A.Y.: A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace. Numerical treatment of eigenvalue problems. Vol. 5, Proc. Workshop, Oberwolfach/Germ. 1990, ISNM 96, 143-154, 1991.
Knyazev A.Y., Neymeyr K.: A geometric theory for preconditioned in- verse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems. Linear Algebra Appl., 358(1-3): 95-114, 2003.
Parlett B.N.: The symmetric eigenvalue problem. Prentice-Hall Series in Computational Mathematics. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. XIX, 348 p. 1980.
Stüben K.: A review of algebraic multigrid. J. Comput. Appl. Math., 128(1-2): 281-309, 2001.
Stüben K.: Algebraic multigrid (AMG). An introduction with applications. Tech. Report 70, GMD, Sankt Augustin, Germany, November 1999.
Vanĕk P., Brezina M., Mandel J.: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math., 88(3): 559-579, 2001.
Vanĕk P., Mandel J., Brezina M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing, 56(3): 179-196, 1996.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Archives of Transport journal allows the author(s) to hold the copyright without restrictions.
This work is licensed under a Creative Commons Attribution 4.0 International License.