Forecasting travel time reliability in urban road transport

Authors

  • Mattias Juhász Department of Transport Infrastructure, Széchenyi István University, Győr, Hungary Author
  • Tamás Mátrai Department of Transport Technology and Economics, Budapest University of Technology and Economics, Budapest, Hungary Author
  • Csaba Koren Department of Transport Infrastructure, Széchenyi István University, Győr, Hungary Author

DOI:

https://doi.org/10.5604/01.3001.0010.4227

Keywords:

travel-time reliability, forecasting, urban road transport, appraisal, congestion

Abstract

Assessment of travel time reliability as a fundamental factor in travel behaviour has become a very important aspect in both transport modelling and economic appraisal. Improved reliability could provide a significant economic benefit if it is adequately calculated in cost-benefit analyses for which the theoretical background has already been set. However, methods to forecast travel time reliability as well as travel behaviour models including its effects are rather scarce and there is a need for development in this field. Another important aspect could be the influencing factor of reliability in travel demand management and related policy-making. Therefore, this paper intends to further analyse reliability focusing exclusively on urban road transport based on automatic measurements of journey times and traffic volumes from a dataset of the city of Budapest. The main finding and the novelty of the study is a model which can forecast the standard deviation of travel times based on the volume-capacity ratio and the free-flow travel time. The paper also provides a real-life numerical experiment in which the proposed model has been compared with other, existing ones. It proves that besides existing mean-delay-based models, travel time reliability can be forecasted based on the volume-capacity ratio with an adequate accuracy.

References

ARUP, 2003. Frameworks for Modelling the Variability of Journey Times on the Highway Network. London: Arup.

BATES, J., POLAK, J., JONES, P., & COOK, A., 2001. The valuation of reliability for personal travel. Transportation Research Part E: Logistics and Transportation Review, 37 (2-3), 191-229.

DAGANZO, C. F., 2007. Fundamentals of Transportation and Traffic Operations. Bingley: Emerald Group Publishing Ltd.

DALE, H. M., PORTER, S., & WRIGHT, I., 1996. Are there quantifiable benefits from reducing the variability of travel times? Paper presented at the European Transport Conference 1996, Uxbridge, United Kingdom. Available from Internet: http://abstracts.aetransport.org/paper/download/id/464

DE JONG, G. C. & BLIEMER, M. C. J., 2015. On including travel time reliability of road traffic in appraisal. Transportation Research Part A, 73, 80-95.

ELIASSON, J., 2006. Forecasting travel time variability. Paper presented at the European Transport Conference 2006, Strasbourg, France. Available from Internet: http://abstracts.aetransport.org/paper/download/id/2491

ESZTERGÁR-KISS, D. & RÓZSA, Z., 2015. Simulation results for a daily activity chain optimization method. Proceedings of the 4th International Conference on Models and Technologies for Intelligent Transportation Systems: 259-264. doi: 10.1109/MTITS.2015.7223265

FICZERE, P., ULTMANN, Z., & TÖRÖK, Á., 2014. Time–space analysis of transport system using different mapping methods. Transport, 29 (3), 278-284.

FOSGERAU, M. 2016. The Valuation of Travel Time Variability. Discussion Paper 04/2016, International Transport Forum.

FOSGERAU, M., & HJORTH, K., 2008. The value of travel time variability for a scheduled service. Paper presented at the European Transport Conference 2008, Noordwijkerhout, the Netherlands.

FOSGERAU, M., HJORTH, K., BREMS, C., & FUKUDA, D., 2008. Travel time variability - Definition and valuation. DTU Transport.

GEISTEFELDT, J., HOHMANN, S., & WU, N., 2014. Ermittlung des Zusammenhangs von Infrastruktur und Zuverlässigkeit des Verkehrsablaufs für den Verkehrsträger Straße – Schlussbericht für Bundesministerium für Verkehr und digitale Infrastruktur. Ruhr Universität Bochum.

GREENSHIELDS, B., 1935. A study of traffic capacity. Proceedings of the highway research board, 14 (1), 448-477.

HORBACHOV, P., NAUMOV, V., KOLII, O., 2015. Estimation of the bus delay at the stopping point on the base of traffic parameters. Archives of Transport, 35(3), 15-26.

ITF, 2010. Improving Reliability on Surface Transport Networks. [online] OECD Publishing. Available at: http://www.oecd-ilibrary.org/transport/improving-reliability-on-surface-transport-networks_9789282102428-en

JUHÁSZ, M., KOREN, Cs., & MÁTRAI, T., 2016. Analysing the speed-flow relationship in urban road traffic. Acta Technica Jaurinensis, 9 (2), 128-139.

JUHÁSZ, M., 2014. Assessing the requirements of urban traffic calming within the framework of sustainable urban mobility planning. Pollack Periodica, 9 (3), 3–14.

KOUWENHOVEN, M., & WARFFEMIUS, P., 2016. Forecasting Travel Time Reliability in Road Transport. Discussion Paper 02/2016, International Transport Forum.

KOUWENHOVEN, M., SCHOEMAKERS, A., GROL, R. V., & KROES, E. P., 2005. Development of a tool to assess the reliability of Dutch road networks. Paper presented at the European Transport Conference 2005, Strasbourg, France.

LAIRD, J., NASH, C., & MACKIE, P., 2014. Transformational transport infrastructure: cost-benefit analysis challenges. Town Planning Review, 85(6), 709-730.

MÁTRAI, T., 2013. Cost benefit analysis and ex-post evaluation for railway upgrade projects. Periodica Polytechnica Transportation Engineering, 41(1), 33–38.

MÁTRAI, T., 2012. Cost benefit analysis and ex-post evaluation for railway upgrade projects – Ex-post economic evaluation, evaluation of traffic disturbance during construction and evaluation of travel time variability. MSc diss., Instituto Superior Téchnico.

MÁTRAI, T., & JUHÁSZ, M., 2012. New Approach for Evaluate Travel Time Variability and Application for Real Case in Hungary. Paper presented at the European Transport Conference 2012, Glasgow, Scotland. Available from Internet: http://abstracts.aetransport.org/paper/download/id/3952

NZ TRANSPORT AGENCY, 2010. Economic Evaluation Manual (Volume 1). Wellington: NZTA.

ORTÚZAR, J. de D., & WILLUMSEN, L.G., 2011. Modelling transport. Chichester: John Wiley & Sons Ltd.

PEER, S., KOOPMANS, C., & VERHOEF, E. T., 2010. Predicting Travel Time Variability for Cost-Benefit Analysis. Discussion Paper, Tinbergen Institute. 24 p. Available from Internet: http://papers.tinbergen.nl/10071.pdf

RAO, A.M., & RAO, K. R., 2012. Measuring Urban Traffic Congestion – a Review. International Journal for Traffic and Transport Engineering, 2(4), 286–305.

SPŁAWIŃSKA, M., 2015. Development of models for determining the traffic volume for the analysis of roads efficiency. Archives of Transport, 35(3), 81-92.

STAMOS, I., MARIA, J., GRAU, S., MITSAKIS, E., & MAMARIKAS, S., 2015. Macroscopic fundamental diagrams: simulation findings for Thessaloniki’s road network. International Journal for Traffic and Transport Engineering, 5, 225–237.

SUSILAWATI, S., TAYLOR, M. A. P., & SOMENAHALLI, S. V. C., 2013. Distributions of travel time variability on urban roads. Journal of Advanced Transportation, 47(8), 720–736.

TAYLOR, M. A. P., 2013. Travel through time: the story of research on travel time reliability. Transportmetrica B, Transport Dynamics 1(3), 174-194.

TRB, 2011. Travel Time Reliability. TRB Transportation Economics Committee. Available at: http://bca.transportationeconomics.org/benefits/travel-time-reliability [Accessed 01 November 2011]

UNITED NATIONS, 2013. World Population Prospects The 2012 Revision Volume I: Comprehensive Tables. New York: UN.

UNITED NATIONS, 2015. World Urbanization Prospects: The 2014 Revision. New York: UN.

VASVÁRI, G., 2015. Additive Effects of Road Functions. Periodica Polytechnica Civil Engineering, 59(4), 487–493.

VÖRÖS, T., JUHÁSZ, M., & KOPPÁNY, K., 2016. The measurement of indirect effects in project appraisal. Transportation Research Procedia, 13, 114-123.

WOOLLETT, N., VAUGHAN, B., & LUNT, G., 2015. Re-validation of speed/flow curves. Paper presented at the European Transport Conference 2015, Frankfurt, Germany.

Downloads

Published

2017-09-30

Issue

Section

Original articles

How to Cite

Juhász, M., Mátrai, T., & Koren, C. (2017). Forecasting travel time reliability in urban road transport. Archives of Transport, 43(3), 53-67. https://doi.org/10.5604/01.3001.0010.4227

Share

Similar Articles

31-40 of 398

You may also start an advanced similarity search for this article.