Simulation analysis of the impact of container wagon pin configuration on the train loading time in the intermodal terminal

Authors

DOI:

https://doi.org/10.5604/01.3001.0015.6928

Keywords:

container train, loading, intermodal terminal, wagon pin configuration, simulation analysis, FlexSim

Abstract

The article presents the issues of a container train loading at the land intermodal terminal. This issue was considered from the point of view of the distance covered by the loading devices and the duration of loading works, which was influenced by the arrangement of containers on the storage yard and the configuration of pins on the wagons. The conducted research was dictated by the small number of publications on loading an intermodal train, especially from the point of view of pin configuration on wagons. The vast majority of the literature is devoted in this field to marine intermodal terminals, which operating characteristics are different from inland terminals. The importance of this problem resulting from the growing turnover of containers transported by rail transport was also pointed out. The systematic increase of this type of transport and the depletion of the intermodal services' operating capability makes it necessary to improve the train loading process. For the purposes of the research, the issues of containers of various sizes loading onto wagons planning with various pin configurations were presented. A literature review was carried out in the field of train loading methods and strategies. A mathematical model was developed for the decision situation under consideration. The equations defining the most important elements of the considered problem were presented in the general form. This model was implemented in the FlexSim simulation environment. The constructed simulation model was used to develop 12 variants of the approach to an intermodal train loading. The train loading tests were performed both for the random arrangement of containers on the storage yard and for the random arrangement of pins on the wagons. The obtained results made it possible to determine how the knowledge of the arrangement of pins on the wagons influences the planning of train loading and increases the efficiency of loading devices.

References

AMBROSINO, D., BRAMARDI, A., PUCCIANO, M., SACONE, S., SIRI, S., 2011. Modeling and solving the train load planning problem in seaport container terminals. In: 2011 IEEE International Conference on Automation Science and Engineering, (1)1, 208-213. DOI: 10.1109/CASE.2011.6042439.

AMBROSINO, D., SIRI, S., 2014. Models for train load planning problems in a container terminal. In: Computer-based Modelling and optimization in transportation, 262, 15-25. DOI: 10.1007/978-3-319-04630-3.

AMBROSINO, D., BERNOCCHI, L., SIRI, S., 2016. Multi-objective optimization for the train load planning problem with two cranes in seaport terminals. In: 14th IFAC Symposium on Control in Transportation Systems, 49(3), 383-388. DOI: :10.1016/j.ifacol.2016.07.064.

ANGHINOLFI, D., FOTI, L., MARATEA, M., PAOLUCCI, M., SIRI, S., 2012. Optimal loading plan for multiple trains in container terminals. In: Odysseus 2012, 5th International Workshop on Freight Transportation and Logistics, 1-4.

BOYSEN, N. FLIEDNER, M. JAEHN, F., PESCH, E., 2012. A Survey on Container Processing in Railway Yards. Transportation Science. Transportation Science, 47(3), 294–454. DOI: 10.1287/trsc.1120.0415.

BOYSEN, N., FLIEDNER, M., 2010. Determining Crane Areas In intermodal transshpment yards: The yard partion problem. European Journal of Operational Research, 204(2), 336-342. DOI: 10.1016/j.ejor.2009.10.031.

BRUNS, F., KNUST, S., 2012. Optimized load planning of trains in intermodal transportation. OR Spectrum, 34(3), 511–533. DOI: 10.1007/s00291-010-0232-1.

CARIS, A. MACHARIS, C., JANSSENS, G. K., 2008. Planning Problems in Intermodal Freight Transport: Accomplishments and Prospects. Transportation Planning and Technology, 31(3), 277-302. DOI: 10.1080/03081060802086397.

CORRY, P., KOZAN, E., 2006. An assignment model for dynamic load planning of intermodal trains. Computers Information Research, 33(1), 1-17. DOI: 10.1016/j.cor.2004.05.013.

CORRY, P., KOZAN, E., 2008. Optimised loading patterns for intermodal trains. OR Spectrum, 30(1), 721-750. DOI: 10.1007/s00291-007-0112-5.

CRAINIC, T.G. PERBOLI, G., ROSANO, M., 2018. Simulation of intermodal freight transportation systems: a taxonomy. European Journal of Operational Research, 270(1), 401-418. DOI: 10.1016/j.ejor.2017.11.061.

DOTOLI, M., EPICOCO, N., 2015. An improved technique for train load planning at intermodal rail-road terminals. In: IEEE 20th Conference on Emerging Technologies Factory Automation, 1-4. DOI: 10.1109/ETFA.2015.7301580.

DOTOLIA, M., EPICOCOA, N., FALAGARIOB, M., PALMA, D., TURCHIANO, B., 2013. A train load planning optimization model for intermodal freight transport terminals: a case study. In: IEEE International Conference on Systems, Man, and Cybernetics, 3597-3602. DOI: 10.1109/SMC.2013.613.

DUINKERKEN, M.B., OTTJES, J.A., 2000. A simulation model for automated container terminals. In: Proceedings of the Business and Industry Simulation Symposium, 10, 134-139.

FROYLAND, G. KOCH, T, MEGOW, N. DUANE, E., WREN, H., 2008. Operations research at container terminals: a literature update. OR Spectrum, 30(1), 55–75. DOI: 10.1007/s00291-007-0082-7.

HEGGEN, H. BREAKERS, K., CARIS A., 2018. Multi-objective approach for intermodal train load planning. OR Spectrum, 40(2), 341–366. DOI: 10.1007/s00291-017-0503-1.

JACHIMOWSKI, R., SZCZEPAŃSKI, E., KŁODAWSKI, M., MARKOWSKA, K., DĄBROWSKI, J., 2018. Selection of a container storage strategy at the rail-road intermodal terminal as a function of minimization of the energy expenditure of transshipment devices and CO2 Emissions. Annual Set The Environment Protection, 20(2), 965-988. ISSN 1506-218X.

JACYNA, M., JACHIMOWSKI, R., SZCZEPAŃSKI, E., IZDEBSKI, M., 2020. Road vehicle sequencing problem in a railroad intermodal terminal–simulation research. Bulletin of the Polish Academy of Sciences. Technical Sciences, 68(5), 1135-1148. DOI: 10.24425/bpasts.2020.134643.

JACYNA, M., PYZA, D., JACHIMOWSKI, R., 2017. Transport intermodalny: projektowanie terminali przeładunkowych. Wydawnictwo Naukowe PWN. ISBN 978-83-01-19680-6.

JACYNA, M., SEMENOV. I., 2020. Models of vehicle service system supply under information uncertainty. Eksploatacja i Niezawodnosc, 22(4), 694-704. DOI: 10.17531/EIN.2020.4.13.

JACYNA, M., WASIAK, M., LEWCZUK, K., KŁODAWSKI, M., 2014. Simulation model of transport system of Poland as a tool for developing sustainable transport. Archives of Transport, 31(3), 23-35. DOI: 10.5604/08669546.1146982.

JACYNA-GOŁDA, I., ŻAK, J., GOŁĘBIOWSKI, P., 2014. Models of traffic flow distribution for various scenarios of the development of proecological transport system. Archives of transport, 32(4), 17-28. DOI: 10.5604/08669546.1146994.

KLODAWSKI, M., JACHIMOWSKI, R., JACYNA-GOLDA, I., IZDEBSKI, M., 2018. Simulation analysis of order picking efficiency with congestion situations. International Journal of Simulation Modelling, 17(3), 431-443. DOI: 10.2507/IJSIMM17(3)438.

KOSTRZEWSKI, A., NADER, M., KOSTRZEWSKI, M., 2018. Racjonalizacja rozłożenia wybranych jednostek transportu intermodalnego na długości ładunkowej pociągu. Prace Naukowe Politechniki Warszawskiej. Transport, 120, 201-208.

KUZMICZ, K.A., PESCH, E., 2018. Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation. Omega 85, 83(1), 194-213. DOI: 10.1016/j.omega.2018.06.004.

LAI, Y-C., BARKAN, CH.P.L., ÖNAL, H., 2008. Optimizing the aerodynamic efficiency of intermodal freight trains. Transportation Research Part E: Logistics and Transportation Review, 44(5), 820-834. DOI: 10.1016/j.tre.2007.05.011.

LEWCZUK, K., 2015. The concept of genetic programming in organizing internal transport processes. Archives of Transport, 34(2), 61-74. DOI: 10.5604/08669546.1169213.

LI, C., BURTON, D., KOST, M., SHERIDA, J., THOMPSON M.C., 2017. Flow topology of a container train wagon subjected to varying local loading configurations. Journal of Winde Engineering and Industrial Aerodynamics, 169, 12-29. DOI: 10.1016/j.jweia.2017.06.011.

LI, X., OTTO, A., PESCH, E., 2019. Solving the single crane scheduling problem at rail transshipment yards. Discrete Applied Mathematics, 264, 134-147. DOI: 10.1016/j.dam.2018.07.021.

MANTOVANI, S., MORGANTI, G., UMANGA, N., CRAINIC, T.G., FREJINGER, E., LARSEN, E., 2017. The load planning problem for double-stack intermodal trains. European Journal of Operational Research, 267(1), 107-119. DOI: 10.1016/j.ejor.2017.11.016.

NEHRING, K., JACHIMOWSKI, R., 2020. Modelling of container train handling in the land intermodal terminal. In: 9th Carpathian Logistics Congress - Conference Proceedings, 242-249. ISBN 978-80-87294-96-3.

PAP, E., BOJANIC, G., RALEVIC, N., GEORGIJEVIC, M., BOJANIC, V., 2012. Crane scheduling method for train reloading at inland intermodal container terminal. In: 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatic, 189-192. DOI: 10.1109/SISY.2012.6339512.

PN ISO 668-1999 – Kontenery ładunkowe serii 1 – Klasyfikacja, wymiary i maksymalne masy brutto.

POWELL, W.B., CARVALHO, T.A., 1998. Real-Time Optimization of Containers and Flatcars for Intermodal Operations. Transportation Science, 32(2), 90-203. DOI: 10.1287/trsc.32.2.110.

STAHLBOCK, R., VOß, S., 2008. Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1–52. DOI: 10.1007/s00291-007-0100-9.

SZCZEPAŃSKI, E., JACYNA, M., JACHIMOWSKI, R., VAŠEK, R., NEHRING, K., 2021. Decision support for the intermodal terminal layout designing. Archives of Civil Engineering, 67(2), 611-630. DOI: 10.24425/ace.2021.137188.

UIC, 2018. UIC International Union of Rail-ways. 2018 Report on combined transport in Europe. Version 1, Last updated: January 2019. Paris: UIC International Union of Rail-ways. Available: https://uic.org/IMG/pdf/2018_report_on_combined_transport_in_europe.pdf

VEEKE, H. P., OTTJES, J. A., 1999. Detailed simulation of the container flows for the IPSI concept. In: Proceedings of the 11th European Simulation Symposium, 1-4. ISBN 1-56555-177-x.

Downloads

Published

2021-12-31

Issue

Section

Original articles

How to Cite

Nehring, K., Kłodawski, M., Jachimowski, R., Klimek, P., & Vašek, R. (2021). Simulation analysis of the impact of container wagon pin configuration on the train loading time in the intermodal terminal. Archives of Transport, 60(4), 155-169. https://doi.org/10.5604/01.3001.0015.6928

Share

Most read articles by the same author(s)

Similar Articles

151-160 of 297

You may also start an advanced similarity search for this article.

Warehouse location problem in supply chain designing: a simulation analysis

Emilian SZCZEPAŃSKI, Roland JACHIMOWSKI, Mariusz IZDEBSKI, Ilona JACYNA-GOŁDA (Author)