Interface and connection model in the railway traffic control system

Authors

DOI:

https://doi.org/10.5604/01.3001.0014.9086

Keywords:

interface, ETCS, modelling, railway traffic control

Abstract

The article presents a model of connection of ETCS application and classical base layer equipment. The model distinguishes three layers: physical, logic and data, which require different modelling techniques and at the same time must be consistent. The model will form the basis for the digital mapping in the Digital Twin of the ETCS application. Layer division is a natural way to represent the structure of a device and its operating rules. It allows a detailed and structured representation of the interfaces of a connection and then an analysis of the connection both with respect to the layer of interest and from the point of view of the interaction between features in the different layers. The S-interface of the LEU encoder of the ETCS is described, taking into account different solutions encountered in practice. The conditions of the connection between the LEU encoder and the environment form a description of one of the two boundaries between the ETCS application, i.e. the implemented ERTMS/ETCS on a specific area of the railway network, and the environment. A general connection model and definitions of a connection and an interface are presented. As an example, the electrical connection with signals transmitted through galvanic connections has been assumed to be typical for LEU encoder and track-side signalling control circuits found in base layer equipment. The physical layer is described in terms of physical parameters and their values. The parameters are divided into electrical (current, voltage and frequency) and mechanical ones (number of leads, conductor thickness, etc.). The values of the electrical parameters are expressed in terms of a uncountable set with defined limits. The logic layer was described in a vector-matrix form. Logic signals are assigned to electrical signals with specific physical parameters. The data layer contains information about the assignment of specific telegrams to specific electrical signals.

References

Burdzik, R., Nowak, B., Rozmus, J., Słowiński, P., Pankiewicz, J. (2017). Safety in the railway industry. Archives of Transport, 44(4), 15-24.

Choi, S. H., Choi, P., Chang, W. D., & Lee, J. (2020). A Digital Twin Simulation Model for Reducing Congestion of Urban Railways in Busan. Journal of Korea Multimedia Society, 23(10), 1270-1285.

Documents Baseline 3 release 1 rendered avail-able by EULYNX on-line. Access 26.11.2019.

Gryglas, M., & P. Wontorski, P. (2020). Standardization of Selected Interfaces of Railway Traffic Control Equipment and Systems – the General Information, Proceedings of 24th International Scientific Conference. Transport Means 2020, 333-338.

Instruction for maintenance, inspection and cur-rent repairs of railway traffic control devices Ie-12 (E-24), Warszawa 2017.

Jacyna M., Gołębiowski P., & Urbaniak M. (2016). Multi-Option Model of Railway Traffic Organization Including the Energy Recuperation. Challenge of Transport Telematics, 2016, Springer Int. Pub. DOI: 10.1007/978-3-319-49646-7_17.

Jacyna, M., & Krześniak, M., (2018). Computer Support of Decision-Making for the Planning Movement of Freight Wagons on the Rail Net-work. Lecture Notes in Networks and Systems, 21, 225–236.

Klimov, A., Kupriyanovsky, V., Stepanenko, A., Pokusaev, O., Petrunina, I., Katzin, D., ... & Chebotarev, E. (2018). BIM and engineering formalized ontologies on the European digital railway in the EULYNX-data economy. International Journal of Open Information Technologies, 6(8), 38-65.

Kochan, A. (2020). Digital Twin concept of the ETCS application. WUT Journal of Transportation Engineering, 131.

Kochan, A., Ilczuk, P., Koper-Olecka, E., Ka-rolak, J., Wójcik, M., Zhyhalov, D., Pogorzelska, A., Kryca, B., & Giżyńska, O. (2020). Ekspertyza możliwości eksploatacyjno-technicznych wdrożenia w Polsce ETCS poziom 1 LS na liniach kolejowych nieprzewidzianych do wyposażenia w pełną wersję ETCS poziomu 1 lub 2 w obecnym krajowym planie wdrażania TSI Sterowanie. Warszawa: Ośrodek Certyfikacji Transportu na Wydziale Transportu Politechniki Warszawskiej.

Kochan, A., Konopiński, L., Ilczuk, P., & Karolak, J. (2015). Wymagania formalno-prawne dotyczące badania interfejsów w systemach sterowania ruchem kolejowym. Problemy Kolejnictwa, 59 (168), 21-26.

Linh N. B. (2017). An Analysis of the Benefits of EULYNX-style Requirements Modeling for ProRail. Doctoral Thesis. Eindhoven: Eindhoven University of Technology.

Mammar, A., Frappier, M., Fotso, S. J. T., & Laleau, R. (2020). A formal refinement-based analysis of the hybrid ERTMS/ETCS level 3 standard. International Journal on Software Tools for Technology Transfer, 22(3), 333-347.

Regulation of the Minister of Infrastructure of 18 July 2005 on general conditions of railway traffic operation and signalling (Journal of Laws no. 172, item 1444, as amended).

Signalling Instructions Ie-1 (E-1), Warszawa 2019.

Signalling Instructions. Metro Warszawskie Sp. z o.o., Warszawa 2014. Approved by the resolution no. 134/14 of the Management Board of Metro Warszawskie Sp. z o.o. of 4.11.2014.

Theeg, G., & Vlasenko, S. (2019). Railway Signalling & Interlocking: International Compendium. (3rd ed.). Leverkusen: PMC Media.

Toruń, A., Sokołowska, L., & Jacyna, M. (2019). Communications-based train control system - Concept based on WiFi LAN network. Transport Means - Proceedings of the International Conference, 911–915.

UNISIG: ERTMS/ETCS FFFIS for Eurobalise, SUBSET-036, Issue 3.1.0, December 17, 2015.

Wontorski, P., & Dzierżak, M. (2020). Digital standard interfaces in railway traffic control systems. WUT Journal of Transportation Engineering, 131, 17-29.

Zabłocki, W. (2008). Modelling of station systems of railway traffic control. Scientific Papers of the Warsaw University of Technology. Transport, 65, 3-180.

Downloads

Published

2021-06-30

Issue

Section

Original articles

How to Cite

Karolak, J. (2021). Interface and connection model in the railway traffic control system. Archives of Transport, 58(2), 137-147. https://doi.org/10.5604/01.3001.0014.9086

Share

Most read articles by the same author(s)

<< < 35 36 37 38 39 40 41 42 43 44 > >> 

Similar Articles

1-10 of 288

You may also start an advanced similarity search for this article.

A model for risk analysis of oil tankers

Jakub Montewka, Przemysław Krata, Floris Goerlandt, Pentti Kujala (Author)

A numerical model for impacts of left-turn non-motorized vehicles on through lane capacity metrics

Andrzej Chudzikiewicz, Juraj Gerlici, Magdalena Sowińska, Anna Stelmach, Wojciech Wawrzyński...

Decision making strategies for warehouse operations

Michał Kłodawski, Konrad Lewczuk, Ilona Jacyna-Gołda, Jolanta Żak (Author)