Electrical Power Infrastructure for Modern Rolling Stock with Regard to the Railway in Poland

Authors

  • Adam Szeląg Warsaw University of Technology, Electric Traction Division, Institute of Power Engineering, Warsaw, Poland Author

DOI:

https://doi.org/10.5604/01.3001.0010.0529

Keywords:

electric train, power supply system, TSI criteria

Abstract

Implementing high-speed trains on Polish railway lines requires a new approach to the issue of power and energy supply via a 3 kV DC power system. Due to the control systems used, modern rolling stock equipped with asynchronous drive allows maintaining a set speed, as far as a locomotive’s power and voltage in a catenary allow it. Characteristics of traction vehicles with asynchronous drives enables run at voltage lower than the rated voltage, however, it entails decrease of consumed power (required for locomotives with power above 2 MW) and loss of motion dynamics. Modernisation of a railway power supply system conducted in Poland since the mid-1990s of the 20th century has intensified in the past couple of years (so-called MUZ-I program) due to the purchase of Pendolino trains, and it primarily include the main lines. A number of modernisation investments (lines E65, E20, E30) are implemented with co-financing from the EU funds. Due to the predicted trains’ speed (200 km/h and above), in order to fulfill the requirements specified in TSI, a power supply system on these lines should ensure achieving high parameters, that is supply of trains with current up to 3.2 kA, while the so-called mean useful voltage should not be lower than 2.8 kV. The article presents solutions introduced on Polish railway and aiming at adjusting the power supply used to the TSI requirements. The range of conducted modernisation works allows for conclusion that the process is in fact a re-electrification of railway power supply systems.

References

JABR, R. A., DZAFIC, I. ,2017. Solution of DC Railway Traction Power Flow Systems including Limited Network receptvity. IEEE Transactions on Power Systems, (in press).

JEFIMOWSKI W.,2016. Simulation research of the influence of the train traffic situations on the rail potential in the power supply system 3 kV DC (in Polish- Badania symulacyjne wpływu sytuacji ruchowych pociągów na rozkład potencjału szyn względem ziemi w sieci powrotnej układu zasilania prądu stałego) Prace Naukowe Politechniki Warszawskiej. Transport, 111, 203-213.

KUZNETSOV V.G, SABLIN O. I., CHORNAYA A.V. ,2015. Improvement of the regenerating energy accounting system on the direct current railways, Archives of Transport, 36(4), 35-42.

LEWANDOWSKI M.,2012. Trakcje w Kolejach Dużych Prędkości (Traction in High Speed Railways). Logistyka, 3,1301-1305.

MACIOŁEK T., SZELĄG. A.,2016. Methods of reducing the negative influence of weather phenomena, icing in particular, on the operation of an overhead catenary, Rocznik Ochrona Środowiska, 18, 640-651.

MINISTRY OF INFRASTRUCUTRE, 2008. Master plan dla transportu kolejowego w Polsce do roku 2030 (Masterplan for railway transport in Poland up to 2030). Warszawa: Ministerstwo Infrastruktury.

PN-EN 50163: 2006 – Zastosowania kolejowe. Napięcia zasilające systemów trakcyjnych.

PN EN550122-1 – Zastosowania kolejowe – Urządzenia stacjonarne – Bezpieczeństwo elektryczne, uziemianie i sieć powrotna – Część 1: Środki ochrony przed porażeniem elektrycznym.

PN EN 50122-2 – Zastosowania kolejowe – Urządzenia stacjonarne – Bezpieczeństwo elektryczne, uziemianie i sieć powrotna – Część 2: Środki ochrony przed skutkami prądów błądzących powodowanych przez systemy trakcji prądu stałego.

PN EN50122-3 – Zastosowania kolejowe – Urządzenia stacjonarne – Bezpieczeństwo elektryczne, uziemianie i sieć powrotna – Część 3: Oddziaływanie wzajemne systemów trakcji prądu przemiennego i stałego.

PN-EN 50388: 2012 – Zastosowania kolejowe – System zasilania i tabor – Warunki techniczne koordynacji pomiędzy systemem zasilania (podstacja) i taborem w celu osiągnięcia interoperacyjności.

EU, 2014. Commission Regulation (Eu) No 1301/2014 of 18 November 2014 on the technical specifications for interoperability relating to the ‘energy’ subsystem of the rail system in the Union (Text with EEA relevance).

TECHNICAL STANDARDS, 2010. Szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do prędkości Vmax - 200 km/h (dla taboru konwencjonalnego)/250 km/h (dla taboru z wychylnym pudłem) – przyjęte do stosowania Uchwałą nr 263/2010 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 14 czerwca 2010 r. (Technical Standards for modernization or construction of railway lines for speed Vmax ~ 200 km/h for conventional rolling stock /250 km/h for tilting body rolling stock – PKP PLK S.A.).

STECZEK M., CHUDZIK P., SZELĄG A., 2017. Combination of SHE and SHM - PWM techniques for VSI DC-link current harmonics control in railway applications, IEEE Transactions on Industrial Electronics, http://ieeexplore.ieee.org/document/7900369/ (22 IV 2017).

SYCHENKO V. G., BOSIY D. O., KOSAREV E.M., 2015. Improving the quality of voltage in the system of traction power supply of direct current Archives of Transport, 35(3), 63–70.

SZELĄG A., PATOKA M.,2014. Some aspects of impact analysis of a planned new 25 kV AC railway lines system on the existing 3 kV DC railway system in a traction supply transition zone, SPEEDAM, International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM 2014, 18-20 VI 2014, Ischia, Italy.

SZELĄG A., MIERZEJEWSKI L.,2005. Systemy zasilania linii kolejowych dużych szybkości (Power supply system of high-speed railway lines), Technika Transportu Szynowego, 5-6, 80-90.

Downloads

Published

2017-06-30

Issue

Section

Original articles

How to Cite

Szeląg, A. (2017). Electrical Power Infrastructure for Modern Rolling Stock with Regard to the Railway in Poland. Archives of Transport, 42(2), 75-83. https://doi.org/10.5604/01.3001.0010.0529

Share

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >> 

Similar Articles

151-160 of 277

You may also start an advanced similarity search for this article.