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Abstract

This paper presents a method, which may be used to determine residual stress distribution
in bodies subject to cyclic loads. A mixed global/local version of the Meshless Finite
Difference Method (MFDM) is used to devise a discrete computational formulation of a
shakedown based residual stress calculation mechanical model for elastic-plastic bodies
subject to cyclic loadings.
Several 1D and 2D verification/validation tests are presented, including thorough dis-
cussion of results and conclusions regarding the details of computational model. The
method developed is applied to determine residual stress distribution in a railroad rail
subject to simulated contact load.

Keywords: analysis and modelling, computer assistance in the engineering tasks and
scientific research, numerical techniques, mechanical properties

1. Introduction

Rail breakage during service may be very hazardous to operational safety. Heav-
ier axial loads, increased volumes of traffic and axial tensile stress at low temperature
due to continuously welded rails (CWR) are believed to be the top driving factors
behind this phenomenon [34].

Precise estimation of actual (momentary) stresses in rail is necessary to correctly
predict breaking failure risk. The actual stresses in rail may be separated into the
following components, introduced during various stages of rail life: manufacturing
(roller straightening), laying (welding of CWR), service (repeated rolling contacts
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of changing location and magnitude). Plastic deformation occurring in rail material
during all these stages results in development of residual stresses, which may attain
very high levels [8,34], thus affecting the operational safety. Current paper deals with
an application of simplified shake-down and Melan’s theorem [20] based method
[25,26], to effectively estimate residual stresses due to repetitive loads of which only
an envelope (in terms of both load magnitudeand load location) is known a priori.
Brief information on numerical and mechanical model is included and accompanied
by results of validation tests. Estimates of residual stress distributions in railhead due
to simulated service load follow. Conclusions regarding the developed computational
approach are presented finally.

2. Meshless Finite Differences

Meshless Finite Difference Method (MFDM) belongs to a wide class of mesh
free methods [1,16,18,22,23,32,35] currently under intensive development in several
academic centers. The original method dealt with regular nodal grids [5,7,30], thus
severely limiting its applications to regular domains.

Finite Difference Method formulation applicable to irregular grids has been de-
veloped beginning in the seventies of the previous century [6,10,13-17,19,21,29,33].
In current work a version of the Meshless Finite Difference Method generalized for
arbitrarily irregular grids, proposed in [14-17] and further developed in [11,12,24]
is used.

The main idea of the method is to replace the differential operators by the
appropriate finite difference operators built on a certain set of nodes, constituting the
so called ”star”. Moreover, when the global method is applied, numerical integration
and assembly are performed, as in the FEM.

The idea of the meshless FDM, implemented for two dimensional domains, is
briefly described below. In such a case, generation of a finite difference operator is
done as follows. An irregular grid of nodes is assumed to be given in an domain
Ω. A certain number of neighboring nodes is associated with every node according
to a specific criterion (for example a cross criterion, or Voronoi neighbors criterion
[16] may be used). Those nodes constitute the so called nodal ”star”, centered on
a node, further called the ”central” one (see Fig. 1). At the ”central” node the
unknown function f is expanded into Taylor series with respect to every node of
the star:
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where:
hj = x j − x0, k j = yj − y0, (2)
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Fig. 1. Irregular “star” for finite difference operator

r j =

√
h2

j + k2
j . (3)

fi – value of the function f = f (x, y) at a nodal point j belonging to the “star”,
f0 – value of the function at the “central” node, i.e. f0 = f (x0, y0).

A weighted minimization method [14] is now applied to obtain a local approx-
imation of the unknown function f (x, y) by a surface of the requested order f � f̃ .
Thus the following weighted error functional is built in case of the second order
surface:
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(4)
where index j enumerates all nodes belonging to the “star” except the central one
and p denotes order of the approximating surface, and at the same time the Taylor
series expansion cut-off level. B is minimized with respect to the derivatives of the
function f at the point (x0, y0):

∂B
∂ {D f } = 0. (5)

In this manner a set of linear algebraic equations is obtained, which is later solved
for the unknown finite difference coefficients at the point (x0, y0):

A · {D f } = C · { f } , (6)

where:
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{ f } = { f1 − f0, f2 − f0, f3 − f0, ..., fn − f0,} , (8)

and A and C are matrices dependent only on the star geometry. The set of equa-
tions (6) yields the required differential formulas for all the first and second order
derivatives

q f = qB j(i) · f j, (9)

where:
q f =

{
f,x, f,y, f,xx, f,xy, f,yy

}
, (10)

qB j(i) – matrix of differential operator coefficients at the node i,
f j – vector made of the function f values at nodes belonging to the “star” at node
i.

The weighted minimization method outlined above may be used to compute
approximate value of function as well as to derive the coefficients of finite differ-
ence operators. The function f , as well as its derivatives, can be approximated at
an arbitrary point (x0, y0) like the Gauss station or the equilibrium equations and
yield condition application point on the figure below, if the error functional (5) is
minimized with respect to f0 as well as {D f }. One may take advantage of this fact
in the global MFDM in order to approximate values of any integrand to Gaussian
station when performing numerical integration (see Fig. 2). Having found the {D f }
vector, one may also generate any difference operator required in the local MFDM
version and obtain the required finite difference equations.

Fig. 2. Approximation and integration between nodes (the dashed line denotes integration subdomain
only): © – nodes i, × – Gauss stations, � – equilibrium equations and yield condition application

point

3. The Mechanical Formulation

The mechanical problem at hand may be stated as follows [25]: an estimate
of actual residual stresses, induced in a body made of the elastic perfectly plastic
material and subject to cyclic loadings may be found using the following constrained
optimization approach:
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find:
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where:
σy – yield limit,
σe

i j – momentary (i.e. time dependent) elastic stresses (determined, as if the
considered body behaved in a purely elastic way during the whole loading process
history),
σr

i j – residual stresses induced in the considered body by a given loading pro-
gram,
σr0

i j – initial residual stresses which existed in the body prior to the current
loading program,

Ci jkl – elastic compliance matrix.
The minimized formula (11) represents the total complementary energy of the

considered body, while formulas (12) – (14) denote the internal equilibrium condi-
tions, homogeneous boundary conditions on the body surface and yield condition,
respectively.

The integral formula (11) is of course applied at the whole analyzed body (i.e.
globally), while formulas (12) – (14) are applied one point at a time (i.e. locally).

4. Tests and Validation of the Model

Numerous tests have been performed, to fine-tune the parameters of numerical
model, such as: numerical integration (around or between nodes, number of points
in formula), location of points, at which the linear equality constraints (equilibrium
equations and boundary conditions) are applied (nodes or points between nodes),
location of points, at which the nonlinear constraints (yield conditions) are applied
(nodes or points between nodes), approximation of the stress state between nodes
(number of nodes and order of the weighting function used to derive the difference
formulas), as well as to verify and validate the mechanical model.

An effort to estimate the influence of: the mesh irregularities on the quality
of computed stresses and the rate of convergence to the analytical solution, the
plastic zone size, complex stress state and location of the elasto-plastic boundary
with respect to the nodes on the quality of estimated residual stress state have been
undertaken as well.
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4.1. Test problems solved in 1D

A thick walled cylinder, made of elastic-perfectly plastic material, subject to
various simple or combined loadings exhibiting radial symmetry and constant along
the length of the cylinder has been chosen as a test problem. Readily available
analytical solutions of such problem exist for the special case of incompressible
material [31,36]. Invariance of loadings along the length of the cylinder led to the
analysis in one, arbitrarily chosen cross-section, while the radial symmetry made
possible the reduction to only one spatial dimension, along the radius.

Cylinder geometry, material constants and level of loading applied warrant, that
the analyzed structure shakes down during the first loading cycle. Three separate
loading cases have been considered (see Fig. 3), namely: pulsating internal pressure
p (an autofrettage problem), pulsating pure torsion with extreme value of torsional
moment equal to M, pulsating torsion M and tension N , acting under a simple
(proportional) loading program.

The loading levels have been assumed to ensure plastic deformation of 25%,
50%, 75% and 100% of cylinder thickness.

Three distinct nodal meshes have been applied along the radial direction in
order to analyze the phenomena of interest (see Fig. 4). Please note, that in case of
torsion and torsion and tension, where plastic zone is located on the outside of the
cylinder the actual mesh used is a mirror image of meshes presented in Fig. 4b)
through 4d).

Fig. 3. Thick walled cylinder subject to cyclic loads

4.2. Test results in 1D

Due to the practical considerations (limited space available) only the most inter-
esting from the practical point of view residual stress component (σzz) is presented
(Figs 5, 6), with the exception of the pure torsion test. Here the only non zero
residual stress (τrz) is drawn (Fig. 7).
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Fig. 4. Nodal meshes used during 1D residual stress analysis: a) regular mesh, b) irregular mesh,
25% of cylinder thickness in plastic zone, c) irregular mesh, 50% of cylinder thickness in plastic

zone, d) irregular mesh, 75% of cylinder thickness in plastic zone

All the performed 1D calculations have led to the following conclusions: rela-
tively low order numerical integration is sufficient to obtain results of good quality,
while open ended formulas (Gauss type) applied between nodes yield much better
results than integration around nodes; equality (equilibrium equations, boundary
conditions) and inequality (yield conditions) constraints should be applied between
the nodes, this is especially true, when irregular mesh is used; the lower the residual
stress approximation order between the nodes, the better the computed residual stress
distributions, the weighted minimization derived differential formulas at the lowest
possible power of weighting factor yield consistently better results than the standard
differential formulas; the irregular mesh of nodes, with properly distributed node
concentration zones (the elasto-plastic boundary seems to be especially important)
seems to have a significant beneficiary effect on the determined residual stresses
in terms of convergence of the calculated results to the known solution, at least
with respect to the total complementary energy (see Fig. 8); the plastic zone size,
complex stress state and location of the elasto-plastic boundary seem to have no
adverse effect on the quality of determined residual stress distributions, when the
nodal mesh is dense enough and the nodes are properly distributed.

During the tests it also has been found out, that the proper treatment of the elastic
solution yields an additional chance to estimate the quality of determined residual
stresses in terms of convergence and convergence limits. Namely, if the nonlinear
constraints (yield conditions) are applied between nodes, one may determine elastic
solution in such points by two approaches: determine these stresses directly at the
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Fig. 5. Residual stress σzz (along the longitudinal axis) in a thick-walled cylinder (1D case) under
pulsating axial force and torsional moment: a) regular mesh, b) irregular mesh. Plastic region depth
(as a percentage of cylinder thickness): © – 25% � – 50% � – 75% ♦ – 100%. Stress relative to

the material yield limit; continuous line - analytical solution

Fig. 6. Residual stress σzz (along the longitudinal axis) in a thick-walled cylinder (1D case) under
pulsating internal pressure (an autofrettage problem): a) regular mesh, b) irregular mesh. Plastic
region depth (as a percentage of cylinder thickness): © – 25% � – 50% � – 75% ♦ – 100%.

Stress relative to the material yield limit; continuous line – analytical solution

necessary points; determine the stresses at nodes and approximate to the necessary
points using the same formulas, as used for residual stresses.

The first approach results in convergence to the exact solution from above and
the second from below (see Fig. 9).
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Fig. 7. Residual stress τrz (along the longitudinal axis) in a thick-walled cylinder (1D case) under
pulsating axial force and torsional moment: a) regular mesh, b) irregular mesh. Plastic region depth
(as a percentage of cylinder thickness): © – 25% � – 50% � – 75% ♦ – 100%. Stress relative to

the material yield limit; continuous line – analytical solution

Fig. 8. Convergence of the total complementary energy to analytical solution

4.3. Test problems solved in 2D

The autofrettage problem, with a pulsating load corresponding to the plastic
zone reaching 25% of the cylinder thickness has been solved as a 2D problem, in
order to: verify the computer code developed to analyze the engineering problems
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Fig. 9. Convergence of the total complementary energy from above and from below

(railroad rail/vehicle wheel) in 2D; check the conclusions arrived at during 1D
analysis.

Fig. 10. 2D test problem solved: a) discretization of the cylinder section, b) location of the cylinder
section in the global Cartesian coordinate system

The set of quadrilateral integration elements has been spanned over an assumed
regular net of nodes (see Fig. 10a)). The equality (internal equilibrium equations)
and inequality (yield conditions) constraints have been applied in the centroids of
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the quadrilaterals, while the 2×2 Gauss integration rule has been used inside the
quadrilaterals. The differential formulas have been generated using the weighted
error minimization method with Taylor series expansion truncated after the first
order terms. The necessary differential formulas have been generated using four
node stars (nodes in quadrilateral vertices).

Calculations have been performed for a 2D section of the cylinder located in the
global coordinate system as presented in the Fig. 10b) (the section having angular
width of 12◦ is located so, that it’s axis of symmetry is at the 30◦ angle to the global
x axis). All actual calculations have been performed in the Cartesian coordinate
system, and afterwards transformed to the cylindrical system of coordinates for
presentation purposes.

4.4. Test results in 2D

All the non zero residual stress components, after the transformation to the
cylindrical coordinate system are presented above (Fig. 11). The perfect coincidence
of computed stresses with the analytical solution indicate that the computational
model is valid, computer code is correct, and most of the customizable parameters
of the computer model (such as integration type, generation of differential formulas)
have been set properly.

During analysis of 1D and 2D tests it has been found out, that centroidal results
of residual stresses are much better than the nodal values (in terms of convergence
to the known analytical solutions and smoothness), so all the subsequent plots will
use the centroidal residual stress values.

Fig. 11. Thick-walled cylinder subject to pulsating internal pressure: a) σrr , b) σθθ , c) σzz. Section
along the line (Fig. 10a)): © – 1 – 1 , � – 2 – 2 , ♦ – 3 – 3 , � – 4 – 4 Analytical solution —
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5. Analysis of Residual Stresses in Rail

A true 3D analysis of the residual stress distribution in a railroad rail under
simulated service loading has been performed for a 132RE rail (US type) subject to
the loading simulated by the contact (Hertzian) pressure applied to the top surface
of rail; the pressure had been applied to an area 1,25 cm wide by 2,00 cm deep with
a peak value of 1280 MPa (corresponding to the wheel load of 15 t), the material
yield limit had been assumed to be equal to 482 MPa. The Young modulus had a
value of 207×103 MPa and Poisson’s ratio 0,3. The track foundation modulus had
been equal to 20,7 MPa.

Taking into account the results of previously performed comparative calcu-
lations, all the results presented below have been obtained under the following
assumptions: quadrilateral differential elements are applied (word element denotes
the integration domain only); 3×3 Gauss integration rule is used inside each quadri-
lateral; internal equilibrium conditions are imposed in the quadrilaterals’ centroids;
homogeneous boundary conditions are imposed in the midpoints between subse-
quent boundary nodes; for the quadrilaterals assigned to the computational plastic
zone yield conditions are applied in the quadrilaterals’ centroids; the weighted error
minimization method with Taylor series expansion truncated after the first order
terms is used to generate the required differential formulas.

Fig. 12. Meshes used for rail calculations

Numerous computational tests have been performed so far, on five meshes dif-
fering in density. Three of the meshes used are presented in the Fig. 12. Results of
comparative calculations of the residual stress distributions for a load applied on the
rail longitudinal axis of symmetry, performed in order to investigate the mesh density
influence on the solution quality (especially in the area of high solution gradients
in the immediate vicinity of contact patch) and convergence of the calculated stress
distributions are shown in Fig. 13-15, as well as in Table 1. Since the same me-
chanical model has been incorporated into two other computational models, using
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the Boundary Element Method (BEM) [2-4] and Hybrid Finite Element Method
(HFEM) [9,27], this opportunity has been used as well to compare the residual
stress distributions determined using MFDM and HFEM (see Fig. 14).

Fig. 13. Convergence test. Contour plots of the σzz residual stress – meshes 1 through 5: left column
– compression (contour interval 21 MPa), right column – tension (contour interval 7 MPa)
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Fig. 14. Comparison MFDM vs. HFEM. Contour plots of residual stress – mesh 5: left column –
compression (contour interval 21 MPa), right column – tension (contour interval 7 MPa)

Fig. 15. Residual stress σzz (in MPa) in railhead on the center-line versus distance from the rail foot
(in cm)

Due to the limited space available, only the σzz residual stress tensor component
in the railhead is presented in all figures pertinent to the considered case, due to
it’s practical importance (it is believed, that this component constitutes the driving
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factor of the crack initiation and growth rate). To improve the readability, the contour
plots have been split into negative (tensile) and positive (compressive) components.
All stress values are in MPa.

The convergence test has been run twice, i.e. for elastic solution determined at
nodes and later on approximated to quadrilateral centroids (“nodal” solution), and
determined directly at quadrilateral centroids (“central” solution), in order to obtain
an lower and upper estimate of the solution, at least in terms of total complementary
energy (see Fig. 9). The same test has been performed using the HFEM numerical
model [27], and the centroidal values of elastic solution. Results are presented in
Fig. 13 through 15.

Table 1
Extreme values of residual stresses, central loading. Convergence test (comparison

MFDM-HFEM)

M
E

T
-

H
O

D

m
es

h

STRESS [kpsi]
σxx σyy σzz σxy

min. max. min. max. min. max. min. max.

M
F

D
M

1 -103,83 71,44 -29,77 59,74 -70,77 36,82 -32,85 32,85
2 -169,48 110,80 -44,49 64,30 -129.61 50,52 -54,22 54,22
3 -200,18 121,25 -53,92 61,79 -155,33 52,66 -59,57 59,57
4 -217,64 120,00 -65,76 56,30 -157,07 49,97 -60,36 60,36
5 -218,62 131,56 -69,98 55,55 -165,15 53,35 -63,89 63,89

H
F

E
M

1 -151,28 80,62 -58,73 69,40 -96,91 29,89 -28,69 28,69
2 -187,14 107,83 -88,87 49,29 134,96 40,96 -40,39 40,39
3 -193,54 124,93 -90,14 46,02 -149,97 48,44 -51,21 51,21
4 -204,57 127,55 -84,53 49,15 -157,25 50,21 -56,28 56,28
5 -221,08 128,12 -86,84 49,71 -156,91 50,66 -59,32 59,32

Table 2
Residual stress tensor extreme values in railroad rail, mesh #5, central loading (comparison

MFDM-HFEM)

METHOD

STRESS [kpsi]
σxx σyy σzz σxy

min. max. min. max. min. max. min. max.

MFDM -218,62 131,56 -69,98 55,55 -165,15 53,35 -9.268 63,89

HFEM -221,08 128,12 -86,84 49,71 -156,93 50,67 -8.605 59,33

AVERAGE1) -219,85 129,84 -78,41 52,63 -161,04 52,01 -8.937 61,61

ERROR2) -1,23 -1,72 -8,43 -2,92 4,11 -1,34 0.332 -2,28

ERROR [%]3) -0,56 1,32 -10,75 5,54 2,55 2,58 3,71 3,71

1) - an arithmetical average of MFDM and HFEM determined residual stresses,
2) - a difference between the averaged residual stress and MFDM residual stress,
3) - relative difference calculated with respect to the averaged residual stress value.
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6. Conclusions

The main conclusions drawn regarding the application of the MFDM discretiza-
tion to the considered mechanical model may be stated as follows: the mixed
global/local formulation of the MFDM has been successfully applied to solve an
engineering problem and compute novel and interesting numerical solutions; the
successful application of the MFDM requires thorough testing regarding the correct
“star” size, weighting function and Taylor series truncation term for both global
and local part of the formulation as well as the integration rule applied; in the
considered problem the smallest reasonable (4 node in 2D) star size, the lowest
order interpolating weighting function (factor p determined according to [15] for
the first derivative) and the Taylor series truncated after the first derivative yielded
consistently the best results; the Gauss integration between nodes of relatively low
order (i.e. 2×2) is quite sufficient, though the quality of final results may suffer
when the stress concentration happens to occur in the zones of skewed integration
elements (i.e. in the corners of railhead); the boundary conditions affect the final
solution very significantly, especially in the zones of low stress intensity, introducing
the oscillations, which tend to propagate from the boundary towards the interior of
the considered domain; of all tested, the integral fulfilment of the boundary con-
ditions proved to be the one introducing the lowest errors to the interior of the
domain.

Regarding the mechanical problem considered, i.e. one characterized by the
localized very high concentrations of stresses and very high stress gradients in
the adjacent zones, one may note that: the residual stress distributions computed on
meshes of different densities seem to be very stable in term of location of tensile and
compressive zones in the railhead, whereas the peak values of residual stresses tend
to stabilize beginning with mesh #3, σyy seems to be the one notable exception here;
therefore mesh #3 may be chosen as the basic mesh for the future calculations as the
mesh offering the best compromise available between the computed solution quality
and time spent on computation; two totally independent discrete methods (MFDM
and HFEM) used to determine residual stresses yield results showing very good
coincidence with respect to the stress component most important from the practical
point of view (i.e. σzz residual stress) in qualitative terms, i.e. spatial distribution
and shape of the tensile and compressive zones, in quantitative terms the extreme
stress values are of comparable range (see Table 1, 2); other stress components show
the same tendency with the exception of σyy residual stress; the erratic behaviour
of the σyy stress component is certainly influenced by the fact, that this stress has
the lowest values, and as such is most prone to the calculation errors; the computed
results are reliable and obtained with reasonable engineering precision.

It is noteworthy, that the solution of the same mechanical problem using an
independent (Zarka based [23]) mechanical model and h-adaptive FEM code has
led to very similar numerical results in spite of significant modelling differences at
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mechanical (incompressibility of plastic strains) as well as numerical (different num-
bers of nodal DOF’s, differences in approximation and the application of boundary
conditions), thus further validating the numerical approach presented here.

7. Further Research Proposed

It has been found out, that the boundary conditions and the integration quality
present the most significant obstacles to further improvement in the quality of results.
Therefore, improvements in these two areas are currently given the highest priority.
Later on an attempt will be undertaken at improving the quality of results in the
transition zones between the nodal meshes significantly differing in density. The cur-
rently obtained results in such cases are still not satisfactory [28]. After that the mod-
ern numerical techniques, such as a’posteriori error estimation and error analysis,
based on results computed so far on meshes of various density, could be applied to
adaptively refine these meshes, thus decreasing the size (number of nodes and vari-
ables) of problems to be solved, at the same time enhancing the quality of obtained
solutions, by precisely controlling the errors committed during solution process.
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