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Abstract

Structural Health Monitoring is becoming more and more important for today’s railway.
Higher requirements are set for safety and availability of both trains and tracks, that
can be achieved using new type of SHM systems. Proposed SHM system is based
on vibration measurements during the rail vehicle operation simultaneously with GPS
position and velocity estimation. Algorithm for rail track health assessment is formulated
as inverse identification problem of dynamic parameters of rail — vehicle system. Track
irregularities of tracks are identified using this procedure. The case study of the SHM
system operates on rail vehicle is presented in the paper.
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1. Introduction

Increasingly demanding market environment for railway transport, where cost
efficiency must combine with availability, reliability and safety, new maintenance
technologies are required. The knowledge about health of both infrastructure and
vehicles is crucial to introduce more effective maintenance technology in this case.
In the past, maintenance activities have in general most often been conducted when
a fault has occurred to repair the system [1, 2]. With experience and increasing
knowledge of technical systems, maintenance activities have evolved towards a more
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preventive approach based on time intervals as the knowledge about the degradation
of the systems and components have increased [2, 3]. These maintenance time
intervals are based on, for example, usage time, distance or the amount of operations
the systems have been exposed to. In the railway industry the maintenance intervals
are often traditionally based on time or mileage, and these intervals are often based
on earlier experience or on the supplier’s specification.

This method of maintenance can be further improve, if the variations in wear
can be monitored.

Today there are many commercial products for condition monitoring on railway
vehicles [4]. Many of these products are wayside monitoring systems and not directly
mounted on the vehicles. One of the most popular system is based on Wayside
Wheel/Rail Load detector [5S] which helps to measure wheel/rail forces via strain
gauge sensors on the rails in selected reverse curves. They also can measure the
angle of attack of each axle with respect to the rail — a parameter that, in combination
with measured vertical and lateral forces, provides information regarding the steering
capability of a track through curves. Dynamic forces at the wheel-rail interface are
capable of causing significant damage to track components and may also damage
other rolling stock axle bearings [6]. Dynamic forces are generated by out-of-round
wheels mainly. This phenomena can be a reason of crack of sleepers, damage the
rail head, and cause failure of rail by either growth of rolling contact fatigue cracks,
growth of detail fractures, or fatigue and fracture of in-track welds [7, 8]. In the
extreme, fracture of the rail can result in derailment. It is assumed that derailment
is a worst case scenario and that financial loss begins well before catastrophic
failure of components or vehicle derailment. The wheel impact monitor is installed
on railway infrastructure to avoid given above problems [9, 10]. The objective of
installing a wheel impact monitor is to limit the damage that out-of round wheels
cause. There are two widely used non-contact methods of quantifying the extent of
damage on the wheel. Strain-based systems, which quantify the force applied to the
rail between two sleepers by a direct relationship between the applied load and the
deflection of the web or foot of the rail, can be estimated by a mathematical model
of the deflection of the rail [11, 12]. The other non-contact method of measuring
damage on the wheel is to place accelerometers on the rail [13, 12]. The extent of
damage on the wheel is inferred from the output of the accelerometer. The height
of the wheel flange, relative to the rail head can provide an indication of both the
radial profile of the wheel and the amount of wear. Since the tip of the wheel
flange is unlikely to be damaged or worn, this provides a quantification of the size
of skid flat or out-of-roundness [14]. If standard limits for the out-of-roundness of
wheels exist, this then provides a direct indication of the need to machine a wheel.
The relative flange height could be measured by light, laser or ultrasound, or by
a mechanism which presses a plate against the flange. Bearing failure, in service,
can be catastrophic. A seized bearing can rotate on its journal and shear the axle,
resulting in a train derailment [15, 16]. In the area of monitoring of railway tracks
and vehicles, some patents can be found. One of them is the US Patent 6951132 —
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Rail and train monitoring system and method in which measuring system is joint
to track every 10-15 miles and acoustic signals is used for detection of damages of
track and vehicle.

In SHM systems there are some different algorithms for damage detection and
assessment, one of them is recently developed a wavelet based method [17], fuzzy —
logic based detection algorithms [18], and artificial neural network based methods
[19]. The new idea of monitoring is presented in [20, 21], there is description of the
method based on inverse identification formulation which helps to detect damage of
a wheel [22]. In the method the response of track on wheel excitation is measured.
The knowledge of the track model is used to identify contact force time history.
Based on identified load history the wheel roughness is determined. Application of
the method requires installation on a track special measurement equipment. But, the
method is not applicable for track roughness assessment. Proposed by authors SHM
system is based on vehicle vibration measurements and can be used at any location
on a track if vehicle moving through this zone. Locations of track irregularities are
estimated using GPS receiver in combination with dedicated system for irregularities
detection. The idea of the monitoring system is a subject of next section of the paper.

2. Problem Formulation

The idea of monitoring system is based on estimation of track One of the
problems to be solved during the development of described diagnostics system is
lateral rail irregularities identification based on the vibrations accelerations measured
on the vehicle. This is an inverse problem defined in the following way [1]: model
of the system is known as well as the response of the system. Excitation in form of
the rail irregularities is to be identified. The graphical presentation of the inverse
problem type can be found in the Figure 1.

This type of problem can be solved with use of various methods described
in literature. Generally the excitation identification algorithms can be divided into
three groups depending on the system model. This classification looks as follows
[9]:

— deterministic methods e.g. [6], [7], [9], [10], [11], [13],
— statistic methods e.g. [2], [3],
— methods based on the artificial intelligence e.g. [3], [4], [12].

Methods based on regression analysis are the most often applied statistic
methods of force identification [2]. The methods consist of identifying the regressive
model parameters, which describes the relationship between the input force and the
response of the system or process parameters. From the group of statistic methods
for force reconstruction, it is worth mentioning the inverse structural filter algorithm
presented in [5].

Methods based on artificial intelligence are used, when there is insufficient
information about the objects dynamics to use its deterministic model. The second
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Fig. 1. Inverse problem presentation

case, when these methods are applied, is the problem of the deterministic model
complexity — for example: it cannot be processed in real time. The advantage of
artificial intelligence methods over statistic methods is their suitability for strong
nonlinear cases. Also, when the object is too complex to be well described by the
regressive model, artificial intelligence is applied. The artificial neural network [3],
[4], plus fuzzy logic [4], are the methods most often used for force identification
within this group of algorithms. Genetic algorithms are also applied for this purpose
but often in combination with other algorithms [12].

The largest groups of algorithms are the methods based on deterministic de-
pendencies. The problem can be solved here in the time frequency or amplitude
domain. Within this method, developed in the time domain, one can distinguish the
iteration methods and the single step methods, based on the mathematical depen-
dencies. In this case, based on the system impulse response and the time histories
of the responses, the time history of the excitation force is determined. One of the
most often-used time domain methods is the method based on the deconvolution
operation, where the properties of the Teoplitz matrix are utilized [13]. Another
algorithm, which operates in the time domain, is the sum of weighted accelerations
technique [6]. It identifies excitation forces by summing the acceleration responses
with appropriate weights. In the time domain, one can identify the harmonic force
by using the inversion of the parametric regressive model [7]. The time domain
iterative methods deal with minimizing the quality coefficient which is defined as the
difference between measured and estimated response of a system [9]. These methods
are often preceded by regularization of the measured response data. Tikhonov is the
most popular regularization algorithm [8].

In the frequency domain, a few techniques exist for excitation force identifica-
tion. The first is the modal filter method [10], [11] which is based on the system
modal model. The modal filter is a tool for extracting the modal coordinates of each
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individual mode from the system outputs by mapping the response vector from the
physical space to the modal space [10]. Application of the modal filter to force
identification is carried out using four major steps [11]: transfer the outputs of the
system from physical coordinates to the modal coordinates using a modal filter,
determine the number of uncorrelated system inputs, locate these unknown inputs,
calculate the amplitude of these inputs. The most popular method which operates in
the frequency domain, is the frequency response functions (FRFs) matrix inversion
technique. As a result of its application, the excitation force spectrum is identified
[9].

In considered case it is necessary to find the kinematic excitation in form of
lateral rail irregularities. This problem has to be solved in the function of path
travelled by the vehicle, to be able to localize irregularities properly. However if the
velocity of the train is known it is easy to find the relation between time of ride
and the travelled distance. It is then suitable to apply one the algorithms, which
identify the excitation in the time domain. As it was mentioned above it is a very
complex problem due to the fact that it is non-linear and non-collocated. It would
be convenient to use one of the method from the statistical group for example the
inverse structural filter method [S5]. The method was already used by the authors to
solve the similar problem — rail-wheel contact force identification [14]. The method
requires a lot of data to properly assess the structural filter parameters, and in the
considered case there were no data available. For the same reason authors eliminated
the method based on artificial intelligence, for example the artificial neural networks
successfully applied earlier to load identification in nonlinear systems [4]. Taking
into account all the difficulties and limitations mentioned above, authors decided
to use the deterministic method based on the system model and objective function
minimization, which was briefly presented above.

The method is one of the most often used iterative algorithms [13, 15]. It is
especially dedicated to the time domain impulse loads identification. That means it
is a perfect method for the considered case. The quality function is a measure of
matching the measured response signal with the simulated one. The method bases
on the minimization of the objective function:

minJ — f (D

The objective function is defined as a difference between response of the system
excited by the unknown force (irregularities) and response of the system model
excited by the identified force (irregularities). The details will be describe later on.

The block diagram showing the identification procedure is presented in the
Figure 2.

The tested rail vehicle was modeled in Adams multi-body software package.
Below the main details considering the model used for simulation are gathered
together. The model was composed of 7 bodies:

— Car body;

— Axels with wheels (wheel sets) (2 bodies);
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Fig. 2. Procedure of lateral rail irregularities identification

— Axle boxes (4 bodies).

The following connections were modeled:

— Axel boxes with axels connected with use of the revolute joints;

— Car body with axel boxes connected with use of vertical springs and dampers
(one spring and damper per one axel box).

The screen from the Adams containing the model is shown in the Figure 3.

During modeling it was necessary to keep the balance between accuracy of the
model (it impacts the accuracy of the identification) and its simplicity (it decreases
computation time).

3. Rail Vehicle and Track SHM System Architecture

Proposed monitoring system consists of three MEMS accelerometers, GPS
module, microprocessor and memory module. The scheme of designed system is
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Fig. 3. Model of the object in Adams

shown in the Figure 4. The accelerometers are located on bearing box of wheelset,
a bogie frame and vehicle under frame. Locations of the accelerometers are shown
diagrammatically in the Figure 5. Location of accelerometers on bearing box base on
the GPS receiver the location of the vehicle and its current speed can be estimated.
The goal of the monitoring and diagnostic system is to detect, find location and
assess dimensions of faults both tracks and vehicle.

The system should be installed on many vehicles running on the same track.
As it is shown in the next section of this paper, based on simulation results, ac-
celeration measured on bearing box is influenced by quality of the track. Solving
of the inverse problem of track dynamics the geometry of the track can be assess.
The location of track failures can be detected from GPS record. To avoid mistakes
due to vehicle suspension failure or roughness of the wheel vibration increasing,
several runs should be recorded and analyzed. If at each run at the same location
on track, damage is detected by the system, with a high certainty it is caused by
track roughness. To detect failures of rail vehicle driving and suspension systems
the model based diagnostics can be employed. It is assumed that suspension has
linear characteristic if its health is in a good condition, but if damage occurs the
characteristics are changed and starts to have nonlinear form. Different type of
nonlinearity can be find for different kind of suspension damages. The method of
nonlinearity detection is implemented in real time system to have information about
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Fig. 4. Architecture of SHM system for rail vehicle and track monitoring

Fig. 5. Location of accelerometers on bearing box

possible failures on-line at the vehicle board but type of damages and its assessment
can be obtained off line using software implemented on PC computer. To design of
the detection and localization procedure the simulation study has been used.

4. Simulation Study

For the simulation study, a standard ERRI rail vehicle with two bogies and two
axels each has been modeled (Figure 6). Each elastic element represents stiffness in
three directions but dampers are defined according to given axis depends on location.
For first level of suspension dampers are located In line with x and z directions but
for second level of suspension spring are In line with Y and Z directions.
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All mass and inertia elements are constant, but only springs and dampers pa-
rameters are treated as stochastic during simulation. Stochastic parameters have
normal distribution with given mean values and variances. In this way uncertainties
of structure due to technology problems are modeled. The following parameters
of modeled vehicle are stochastic with normal distribution. Transverse stiffness of
the primary suspension with mean value of k,; ., = 31400 N/mm and standard
deviation of 5000 N/mm. Vertical stiffness of the primary suspension with mean
value of k,, . = 1220 N/mm and standard deviation 210 N/mm. Transverse stiffness
of the secondary suspension with mean value of kg , = 160 N/mm and standard
deviation 20 N/mm.

Fig. 6. Scheme of vehicle used for simulation study

Vertical stiffness of the secondary suspension with mean value of kg, , = 430 N/mm
and standard deviation 65 N/mm. Vertical damping of the primary suspension with
mean value of dj,;. = 1000 Ns/m and standard deviation 135 Ns/m. Transverse
damping of the primary suspension with mean value of d,;; . = 60000 Ns/m and
standard deviation 9000 Ns/m. Vertical damping of the secondary suspension with
mean value of d;,;. = 6000 Ns/m and standard deviation 800 Ns/m. Transverse
damping of the secondary suspension with mean value dys, = 6000 Ns/m and
standard deviation 800 Ns/m.

During the simulation, responses of the rail vehicle components in a form
of acceleration at two points on bearing box and frame of the vehicle body. The
vehicles drives with different speed starting from 40 [km/h] till 100 [km/h] on
a rail with roughness in a form o regular waves with lengths of 2, 4, 6, 8 [m]
simultaneously with equal amplitude of 5 [mm] with standard deviation of 1 [mm)].
Monte Carlo Simulation scheme has been applied to find probability density function
of acceleration at given point located on vehicle structure. The results are shown in
Figure 7.

As it can be observed from obtained results for higher driving speed dispersion
of obtained results is bigger what makes detection of rail truck quality more difficult.
The dispersion of acceleration measured at bearing box is the smallest one and this
location of accelerometers should be used for detection of track damages. The second
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task for designed monitoring system is detection of faults of vehicle suspension
primary and secondary one. In order to assess possibility of fault detection based
on acceleration measurements sensitivity of acceleration.

The accelerations measured on bearing box are sensitive to change of suspension
parameters and can be applied for damage detection of vehicle (see Figure 8).

Probabilty Density Puncoon fo accelerstion o baaring box Probabilty Density Funcion fo acceleration o vehile rame.

Fig. 7. Results of simulation of acceleration of vehicle a) bearing box, b) under frame of vehicle,
moving with different speed on the truck with roughness mean value amplitude 5 [mm] and standard
deviation of 1 [mm]

Sensitivity of acceleration on bearing box
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Fig. 8. Sensitivity of acceleration of bearing box on suspension parameters changes

5. Procedure of Rail Track Roughness Identification

Formulated track roughness identification is based on solution of an inverse
identification problem, which is defined as follows [23, 24]; model of the system
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is known as well as the response of the system, but excitation in form of the rail
irregularities is to be identified.

Such defined problem is not easy to solve because a rail vehicle — rail track
system is non-linear and non-collocated. The problem has to be solved in the time
domain to find track irregularities. To its solution the method of quality function
minimization was proposed [25]. The quality function is a measure of matching
the measured response signal with the simulated one. The method bases on the
minimization of the objective function: min J — f.

The objective function is defined as a difference between response of the system
excited by the unknown track irregularities and response of the system model excited
by the identified track irregularities:

N
JO ) =D (a5 =y)Dia; =y @)
J=1

where: ¢ — initial conditions of the motion f;, q;, y,; — vectors of load (rail irregu-
larities) and of the response calculated and measured in the time sample j, D —
weight matrix.

Such a formulation of the problem is not sufficient because a mathematical
solution that will minimize J will usually end up with the model exactly matching
the data. The situation that is to be avoided. This is where the regularization method
enters. By adding a term to the objective function one can control the amount of
smoothness that occurs in the solution by varying the parameter a. This method is
referred to as Tikhonov’s method [26]. With the regularization term the full formula
of the objective function presents as follows [27]:

N
J(e, fj) = Z (qj—y)D(q; —y)" + a’f,‘Tfj 3

J=1

where: @ — smoothing parameter.

Authors decided to use L — curve method [27, 28] for @ parameter selection
as the one which requires less computations. To solve the optimization problem the
dynamic programming was used [29]. Entire procedure was programmed in MAT-
LAB. The model of the vehicle was build in MD ADAMS. Formulated identification
procedure was shown in the Figure 2.

6. Verification of the Method Using Simulation

Firstly the presented approach was tested on simulation data. The rail irreg-
ularities identification was predated by the procedure parameters assessment. The
minimal value of the objective function was set to j,; = 0.1. The maximum number
of iteration was set to 1000. The regularization parameter was estimated with use of
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the L-curve method its value amounted 0.1E-03. Results of rail irregularities iden-
tification are presented in the Figure 9 — comparison of the acceleration simulated
initially (measured) and obtained as a result of the iterative procedure, and in the
Figure 10 — comparison of rail irregularities — assumed and identified.

Lateral Accelerafion at the Axe Box - Simulation - 100 km/h
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Fig. 9. Comparison of the acceleration simulated initially (measured) and obtained as a result of the
iterative procedure
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Fig. 10. Comparison of rail irregularities — assumed and identified

As it can be seen in the Figures 9 and 10 the results of simulation verification
were quite promising. As a comparison criterion the correlation coefficient and
the RMS of the signals were established. The correlation coefficient between rail
irregularities assumed and identified amounted 0.9957. The error between RMS
calculated for both signals was smaller than 17%.
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7. Application of the Procedure to the Measured Data

The presented procedure was also applied to the measured data. The experiment
was performed on the route between Krakow and Wadowice. The testing sector of
the route is presented in the Figure 11. The lateral vibrations accelerations were
measured on the axel boxes of the middle (B) boogie of the vehicle. The measure-
ments were taken for different velocities (20-85 km/h) and different drive profiles
(acceleration, braking, ride in curves). The rail irregularities were not measured.

That is why performed rail irregularities identification could have been judged
only from the accelerations comparison. The calculations were done for different
velocities of the vehicle-bus. In the Figure 12 the comparison between vibrations
accelerations measured and simulated in Adams is placed.

In all runs one can notice that the procedure follows the data in general but the
higher frequency component are not reconstructed well. It is due to the fact that in
the model only lower modes are included. In the Figure 13 example of identified
lateral rail irregularities is presented.

Fig. 11. Measured track (photo by Google Maps) and rail vehicles used for test
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Fig. 12. Comparison between vibrations accelerations measured and simulated in Adams for different
velocities of the vehicle
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10 Identifed lateral rail imegularities - 20 kn/h
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Fig. 13. Rail irregularities identified for 20 km/h — no measurement verification Both the character of
irregularities and their amplitude have reasonable value

8. Conclusions and Final Remarks

The first attempt of lateral rail irregularities identification has been presented.
Simulation verification gave relatively good results — correlation coeflicient between
simulated end identified runs amounted 0.99. The error between RMS calculated
for both signals was lower than 17%. The identification performed on the real
measurement data showed that the best results one can achieve for small velocities.
However this conclusion is drawn only from the vibrations accelerations comparison
— there was no rail irregularities measurements performed to compare. The method
can be applied as SHM method for track condition monitoring and is helpful to rail
track maintenance planning. For the further work we will test different optimization
and regularization algorithms. The real time implementation of the procedure is
planned. The experiment with measured rail irregularities is also planned to confirm
efficiency of the method for the physical data.
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