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Abstract

The peculiarities of combination of finite-element method and equations of solid dy-
namics, the basic stages of development of the program complex Belinda for calculation
of statics and dynamics of the rods constructions as applied to railway bridges are
described.
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1. Introduction

The introduction of computer technologies in the sphere of scientific, enginee-
ring and productive human activities became the in essence solution of a number of
problems related to the automation of calculating processes. There is a great quan-
tity of various programs, from comparatively small ones to difficult and expensive
program complexes, meeting practically any needs of user. It is possible to assert the
possibilities of modern software correspond in full measure to powers of computer
techniques, opening progressively new prospects for the design, calculation and
analysis of various physical processes and phenomena.
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In the field of calculation of building constructions the specialized software
— computer-aided design systems — is used [1, 2] divided into three basic types:
CAD (computer-aided design), CAM (computer-aided manufacturing) and CAE
(computer-aided engineering).

In practice there is often a necessity for combination of the indicated tech-
nologies. E.g., an engineer-designer, engaged in the design of bridge constructions,
frequently needs in the presence of not only a system of automated development
of drafts (CAD) but also a system, by means of which for the elements of this
construction the stressed-and-strained state can be determined and the verification
on the limiting states is realizable (CAE).

Thus, during the last period it becomes reasonable the appearance of the so-
called hybridcomputer-aided design systems, having available not only the developed
visualization facilities but the high calculation potential as well (Ansys, Nastran,
Adams, UM).

Nevertheless, many everyday engineer’s tasks have narrowed enough specia-
lization and do not require bringing in of universal calculation complexes for solving
them. In such cases it is possible either to resort to the mathematical simulation or to
take advantage of small profile software packages. The functionally profile CAD’s
are considerably simpler than universal calculation complexes and more flexibly
take into account design features an end user needs. For example, the computer-
aided design packages for building constructions, after determination of parameters
of the system stressed-and-strained state offer to the user some prepared (library)
solutions, e.g., assortment data, recommendations on mounting etc. Thus there is no
need in long-term training at the special-purpose courses or studying programming
languages by end user, because the interface of the profile programs, as a rule,
is maximally adapted to application in a certain technical area and operates with
characteristic for this area terms and concepts [3]. The calculation packages of both
domestic (SCAD, Lyra, Monomah, Sapphire) and foreign (Abacus, Robot, Catia,
and others) development can serve as examples.

In works [2, 4, 5] the fundamental approaches to development of computer-
aided design systems (CAE) with the use of geometric modeling and numerical
calculation methods are considered in detail. An original approach to realization
of the CAD system for determination of stressed-and-strained state of a transport
structure, wherein the finite-element method is used as a calculation basis, is pro-
posed by authors in [4]. A module of geometrical design visualizing the designed
object geometry is an integral part of every modern CAD system. The principles
of construction of the modules of geometrical design on the basis of parametric
curves, surfaces, bodies, static and dynamic models with the use of PLaSM pro-
gramming language are considered in work [6]. Must be states the importance of
presence of the specialized interface or high level problem-oriented language [7]
in the calculation program as well as its close integration with other complexes
through information-and-logical models [8].



The Simulation of Vibrations of Railway Beam Bridges. . . 465

However it is necessary noted that among modern computer-aided design sys-
tems, in particular, calculation CAE complexes there is a comparatively small num-
ber of electronic products oriented to the dynamic calculation of bridge construc-
tions. In this article the authors present the basic results on development of software
complex Belinda for calculation of statics and dynamics of the rod constructions
(as it is applicable to railway bridges) based upon the finite-element method and
the equations of solid dynamics.

2. Formation of Finite-Element Model of Span

Let us consider the metallic beam span of single-track railway bridge 33.6
m in length (Fig. 1, a). The cross-section of bridge span consists of two main
beams combined by a system of longitudinal, transversal and diagonal connections.
In the middle part of bridge span every beam has 2.61 m in height of a vertical
sheet, horizontal sheets are situated symmetrically and have the following sizes:
25 X 490 mm (internal) and 40 x 590 mm(external).

Fig. 1. Railway bridge span and its rod model

Let us accept the model of this span as a discrete design model (Fig. 1, b).
We divide a construction into four sections of equal length, replace the main beams
of span with a system of weightless elastic rods /; = 8.4 m in length connected in
nodes with numbers i = 1, 2,..., n. We bind the local right-side coordinate system
O, jtoeveryrod j, j=1,2,...,n—1. For all the construction we define the global
coordinate system O (Fig. 2, a).

The rod element presented in Fig. 2 works on deflection in planes xy,zx, on
tension-compression and twisting in relation to a longitudinal axis x. The moments
of inertia of cross section of rod j are as follows: 11:0.131 m* in relation to main
central axis y (vertical deflection), J, = 7.44x107>m* in relation to axis z (horizontal
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0 E.

Fig. 2. Orientation of rod and assembling of stiffness matrix

deflection), J, = 3.2 x 10°m* in relation to axis x (twisting). The area of section
A=0.102 m?, beam material modulus of elasticity equals E = 2.1x10'! Pa, the shear
modulus is G = 7.8x10'% Pa. It is assumed that in the system under consideration
all the rods are geometrically and physically linear, the hypothesis of Bernoulli and
the Saint-Venant principle are satisfied.

In the three-dimensional statement i-th node of construction, which is free of
the kinematic fixings, possesses six degrees of freedom and its position in the
global coordinate system at any time moment can be described by a vector with six
elements Z. In the direction of these translations the main vector of node forces
RY is formed:

70 {x Yz ée ¢, ¢Z}; RY ={Fx Fy, F. M, M, MZ}. 6]

For determination of translations and forces in the end sections of rod j connecting
nodes 7 and (i + 1) we define the corresponding sectional matrices

2 RO
Zo=| -2__ | R.=| = __ 2
J Z§i+l) ’ 7 RE.M) ’ 2)

where an overhead index (in brackets) is related to the number of node, and a lower
index — to the number of rod.

Each of matrices (2) is built by combining two corresponding matrices (1) and
has an order 12 X 1. The connection between translations of the i-th end of rod and
the forces in this section is described by linear equation

@) _ ~D)—~>)
R =Pz, 3)

where CY” is a stiffness 6 X 6 square matrix for the i-th section of rod.
For both ends of rod we have

R =CZ,, “)
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where C; is a stiffness 12 x 12 block square matrix in the form

Ci=|----- | ————— . o)

Each of four embedded 66 matrices (5) contains the reactions to single translations
of the end of rod j in its local coordinate system O, ;. This is a stiffness matrix of
joint (three-dimensional) element of rod [9] and matrix C;; can be represented in
the following form:

 EA
- 0 0 0 0 0
12EJ. 6EJ.
0 —f— 0 0 0 n
12EJ, 6EJ,
0 0 . 0 -—
Cll = ! GJ ! . (6)
0 0 0 lx 0 0
6EJ, 4EJ,
0 0 7 0 7
6EJ, 4EJ,
= 0 0 0 l

Every element of general stiffness matrix C of the rod system is calculated as an
algebraic sum of separate stiffnesses of rods connected in the given node. E.g., for
node i, adjacent to two nearby rods j—1 and j (Fig. 2, b), the corresponding element
of general stiffness matrix looks like

i—l" 1 1
ST |
pruya 0 ) 0
- S L
! i—1,i 0i+1 !
: C12 +Cll+ :
Ca=| 0 SRt O D
_______ G G
1 1 ,i+1
0 0 flf_
. . c;;”

In canonical equations of displacement method the external generalized forces, con-
centrated in the nodes of the discrete mechanical system, are considered as known
[10]. However a system can also go into the stressed-and-strained state under the
influence of such factors as the forced translations of its separate points (vertical,
horizontal displacements of nodes, turns of sections, etc.). In this case the displace-
ments of nodes are the sought-for quantities and must be set as unknown. Therefore
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let us divide the kinematic parameters of this mathematical model into two groups
— the desired parameters determined by solution of system of displacement method
canonical equations and the prescribed parameters determined by solution of mo-
tion equations system or by initial construction geometry. The first group parameters
can be obtained, as a rule, as a result of static calculation of the system, while the
second group ones - as a result of direct integration of the system of motion equa-
tions. These parameters belong to the factors of kinematic disturbance of the system
and are possible transformed into equivalent node forces. Using dependence (4) and
taking into account that the main vector of node reactions is equal by absolute value
to the main vector of forces from the external load and is opposite to it by sign, for
rod j we have

Fj’A:—Rj:—Cj'A/‘, (8)

where A; is a vector-column of the forced displacements of both ends of the j-th
rod in the global coordinate system.
For all the rod system let us write down

Fpn=-C-A. )

Then the forces Fa, which are equivalent to the forced displacements, are to be put
to the nodes of construction together with other external loads and influences Fj,
and the system of canonical equations of displacement method in matrix form gets
the following form:

Z=L(Fr+Fy); L=C, (10)

where L is a yielding matrix.
If we designate the vector of total node loads as:

F =Fp+Fy, (11)

then equation (10) is as follows:
Z=LF. (12)

The order of matrices Z, C, L, F depends on the quantity of the system nodes n. In
order the system of equations will cease to be degenerate, from all matrices (12)
we will exclude rows and columns corresponding to the kinematic fixings of nodes:

Z=LF, L=C", (13)

where a line above a matrix means the reduced form of this matrix.
Using relations (4) and (13), let us find the values of internal forces (reactions)
in the system nodes:
R=C(LF), (14)

where in matrix R adding to it the columns and rows eliminated before with com-
pletion of them by zero elements.
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Dependences (12), (14) allow finding force and deformation factors in all nodes
of the discrete system of rods, which corresponds to the static calculation of con-
struction. For realization of dynamic calculation it is necessary to set a time interval
in the range #; . . . #;, to choose initial conditions and conduct a preliminary static cal-
culation, to define the sizes of stiffness and yielding matrices, etc. Then it is possible
to come to integration of the motion equations of the system nodes with application
of the set static and dynamic forces to the construction. In the following section it
is demonstrated how this approach is realized in the program complex Belinda.

3. Application of the Object-oriented Programming for
Calculation of Statics and Dynamics of the Elastic
System of Rods

The Delphi environment for object-oriented programming is a rapid and effec-
tive tool of software development for use in the wide range of different applications.
Based on high-level algorithmic-strict language Object Pascal, the Delphi environ-
ment allows in full measure involving all potential of the modern personal computers
and multiprocessor computer stations for solution of calculation tasks.

As other programming languages, Object Pascal operates the set of fundamental
data types. Most essential for scientific and engineering calculations among them
are numeric data, in particular, type of real number “Extended” having the range
3.6 x 10771 1.1 x 10%%; at design of mechanical systems it allows determining
the objects of large mass and stiffness.

The program complex Belinda functions under the Microsoft Windows 32-bit
operating system. In general case, there are no restrictions on the type of processor
and operating memory used. However for effective realization of dynamic calcu-
lations the Intel Pentium III or AMD Athlon and higher processors, with no less
than 1 GB of available RAM are recommended. The complex Belinda (Based on
Euler-Lagrange equations Integrated for Non-linear Dynamics Application) serves
for the calculation of nonlinear dynamics on the basis of intergrable equations of
Euler-Lagrange.

Functionally the complex is divided into three blocks, characteristic for the ma-
jority of CAE programs of this class: design (preprocessor), calculation (processor),
analysis of results (post-processor). The first block is served by the elements of
interface responsible for development of structural model of the construction by
means of geometrical modeling. An initial analytical model as a batch file can be
prepared in any text editor.

The mathematical support of calculations is realized in the modules of complex
Matrixes.pas, UnitMath.pas. The first module is responsible for forming, work and
demounting of objects of data class TMatrix, TVector (matrix and vector of real
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numbers accordingly), different mathematical procedures and functions are declared
in the second module.

The procedures for modeling and static calculation of the elastic system of rods
are described in the FEM.pas module. The topology of data classes of this module
is presented in Fig. 3.

TDiscreteDamping

TFEMBaseObject
U
TLogicDofParameter \ TFloatDofParameter | TNode | TMaterial | TGeometry | TBar | TConstruction
i i i i i i i i
TFixation TPosition i
TDrift
i

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
! s TForceMoment ! ! ! !
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

TVelocity

Fig. 3. FEM.pas topology of data classes

In the data class TFEMBaseObject the base procedures and functions are de-
clared for work with the objects of structural model: creation of text mark of object,
presentation of parameters of object as a matrix, etc. The classes TLogicDofPara-
meter and TFloatDofParameter contain six Boolean and real components, respec-
tively. The data classes for description of the kinematic fixings of node (TFixa-
tion class), position of node (TPosition), forced displacements of node (TDrift),
generalized force factor (TForceMoment), matrix of viscous resistance coefficients
(TDiscreteDamping), vector of node velocity (T Velocity) are based on these classes.
The data classes TMaterial and TGeometry describe the properties of material and
geometry of rod, respectively. The data class TNode designs the node of rods system,
the class TBar is an elastic rod.

The independent TConstruction data class describes basic properties of the rods
system, manages the lists of nodes (Nodes) and rods (Bars), and also realizes the
functions and procedures of its static calculation by the finite-element method; their
topology is presented in the following graph (Fig. 4).

The structural block of Matrixes in the TConstruction data class contains 10
basic matrices (TMatrix data class) for realization of static calculation of the rods
system: StiffMatrixSource is a general stiffness matrix of the system without the ac-
count of the kinematic fixings; StiffMatrix is the same taking into account
fixings; ComplMatrix is a yielding matrix of the system; NodalDisp is a vector
of the node displacements; FM is a vector of the node loads; Dofs is a vector
of Boolean constants for description of the kinematic fixings; Drift is a vector of
the forced displacements of nodes; NodalReact is a vector of node reactions of
the system; DriftToNodalFM is a vector of node forces equivalent to the forced
displacements of the system nodes; Epure is a rod stress matrix. These matrices are
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formed in the corresponding procedures of structural block Calculation. The block
Service is responsible for realization of some auxiliary operations: RecalcBarRo-
tationMatrixes is to recalculate the rotation matrices of rods of the elastic system;
SetActualFixations is to set the kinematic fixings of nodes; Cut is to transform
the stiffness matrix for accounting in it the kinematic fixings by setting to zero of
corresponding rows and columns with placing of one on their crossing.

TConstruction
U
Nodes : Bars : Matrixes : Calculation : Service
I v i v
| i [StiffMatrixSource) 1 [CalculateStiffMatrix i RecalcBarRotationMatrixes
i i StiffMatrix i CalculateComplMatrix i SetActualFixations
i i ComplMatrix i CalculateNodalDisp i Cut
i i NodalDisp i CalculateFM i
E E FM E CalculateDofs E
i i Dofs i CalculateDrift i
i i | Drift i | CalculateNodalR eact i
i i NodalReact i CalculateDriftToNodalFM i
i i DriftToNodalFM i CalculateEpure i
|| (Epure | |

Fig. 4. TConstruction data class properties

The order of procedures call in the block Calculation is extremely important
from the viewpoint of efficiency of realization of calculations and to minimize the
time used. It does not matter in static calculation, time of which is, as a rule, from a
few seconds to a few minutes (for systems with large number of degrees of freedom),
but it is substantially meaningful in calculation of dynamics, when for determination
of the stressed-and-strained state of the system a static calculation is to be executed
repeatedly. In this context, the sequence of call of procedures of block Calculation
in the program complex Belinda is determined by the following algorithm (Fig. 5).

For realization of static calculation it is enough to prepare information about the
kinematic fixings of the system nodes (procedure SetStaticFixations) and to execute
subsequently three stages of calculation: CalculateStagel — for procedures Recalc-
BarRotationMatrixes, CalculateDofs, CalculateStiffMatrix, CalculateComplMatrix;
CalculateStage2 — for CalculateDrift, CalculateDriftToNodalFM; CalculateStage3
— for DoLoad, CalculateFM, ApplyDriftToNodalFM, CalculateNodalDisp, Calcu-
lateNodalReact, CalculateEpure. Here the procedure DoLoad provides the applica-
tion of the set external loads to the system before forming of them in a general
vector in procedure CalculateFM. The procedure ApplyDriftToNodalFM applies to
the system nodes the forces equivalent to the forced displacements of nodes, if such
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are set. On completion of calculation the tools of viewing of results (Postprocessor
procedure) become accessible.

Processor
U
Static : Dynamic (time =¢,,K ,#,K ,1,)
v | v
SetStaticFixations E Time step t=t¢, . Time step =t : Time step 1=¢
Lo v I T
CaleulateStagel | gefInitialConditions | SetDrift | Postprocessor
v | U | U |
CalculateStage?2 E ResetSolver E CalculateStage2 E
U | U | U |
CalculateStage3 E SetDynamicFixations E CalculateStage3 E
Lo Y i i
Postprocessor i CalculateStage 1 E E

Fig. 5. The algorithm of static and dynamic calculations

As can be seen in Fig. 5, for dynamic calculations there is no need to conduct the
first stage of calculations CalculateStagel at every step of integration. After prepar-
ing of initial conditions (SetlnitialConditions) and setting to zero for solutions of the
system of differential equations (ResetSolver), the actions at the first step of dynamic
calculation are analogous to ones actions in static calculation. The stages of calcula-
tion CalculateStage2, CalculateStage3 are to be executed at every step of integration.

The conditions, according to which kinematic fixations are superimposed on
displacements of system nodes, are different for static and dynamic calculations.
For example, in dynamics a node must have kinematic fixing if mass or mass
moment of inertia are concentrated in this node. The last circumstance determines
participation of kinematic parameters of the node in a general system of equations
of motion.

The program complex Belinda is under continuous improvement. In the last
version by means of the specialized program objects “contact group” and “dynamic
loading” the interaction of the three-dimensional rods system with the series of
moving harmonic forces is realized. In doing so, the concentrated force factors are
objects independent on the construction, can possess linear velocity and move in
the indicated direction. Other types of dynamic loads distributed, impulsive ones
as well as the consideration of transient modes of their motion are planned for
realization in further versions of the software.

The application of the program complex Belinda for analysis of the forced
vibrations of metallic railway bridge spans is described in the following section.
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4. Design of the Forced Vibrations of Beam Railway
Bridge Spans

The rods model of beam (Fig. 1) is examined at different approaches to modeling
of VL8 locomotive line. Such schemes of presentation of locomotive as systems of
moving forces are studied: one, two, eight constant forces; one, two, eight permanent
vertical forces with dynamic harmonic additions on natural frequency of vertical
vibrations of VL8 locomotive are presented (Fig. 6).

Fig. 6. The schemes of presentation of locomotive as systems of moving forces

The results of dynamic design of railway bridge span at different speed of
motion obtained in the program complex Belinda are presented for static forces
(Fig. 7) and for static forces with harmonic additions (Fig. 8). Because of motion
time at different speeds the difference of axis x position of loads on length of bridge
span is shown in Fig. 7, 8.

m
o
o
o
=]

Translation,

Fig. 7. Bending deflection of middle of span at different speeds of locomotive motion
presented by the series of static forces, N quantity of forces
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Fig. 8. Bending deflection of middle of span at different speeds of locomotive motion
presented by the series of harmonic forces, N quantity of forces

The value of single static vertical moving force is accepted equal to the weight
of single VL8 locomotive (F= 1840 kN), harmonic force is set in a form

F(t)=F;(1+A;sin2nvit + Ay sin 2mvot), (15)

where F is a static component, A; is a dynamic addition of i-th harmonic with
linear frequency v;.

The amplitude of vertical harmonic moving force is accepted equal to the weight
of single locomotive VL8 with harmonics equal to vertical frequencies of the spring
suspension of bogies. F,=1840 kN, A;=0.05, v;=4.95 Hz, A,=0.15, v;=20.0 Hz.

Axis of ordinate reflects the location of load over the length of bridge. From
the figures it is obvious that the chosen locomotive scheme affects substantially the
maximal bending deflection of bridge span middle and it is necessary to accept
a scheme with the quantity of forces equal to the number of wheel pairs. The
estimations of error for the different considered schemes and motion speeds from
5 m/s to 35 m/s of the locomotive are given in Table 1.

The bending deflections of bridge span middle for the considered range of
speeds depend more significantly on the chosen calculation scheme than on the
speed of load motion.
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Table 1
The estimations of error of the chosen calculation schemes for locomotive VL8
Static Forces Static Forces with Harmonic Additions
N=1 N=2 N=8 N=1 N=2 N=8
Speed, de‘ﬂac- relative de‘ﬂac- relative de‘ﬂac- relative de‘ﬂac- relative de‘ﬂac- relative de‘ﬂac- relative
m/s tion, | error, | tion, | error, | tion, | error, | tion, | error, | tion, | error, | tion, | error,
m % m % m % m % m % m %
5 0.033 65 0.025 25 0.020 - 0.036 | 33.33 | 0.025 | 7.41 | 0.027 -
10 0.031 55 0.025 25 0.020 - 0.034 | 2593 | 0.024 | 11.11 | 0.027 -
15 0.030 | 57.89 | 0.025 | 31.58 | 0.019 - 0.034 | 2593 | 0.024 | 11.11 | 0.027 -
20 | 0.030 | 66.67 | 0.024 | 33.33 | 0.018 - 0.033 | 17.86 | 0.024 | 14.29 | 0.028 -
25 0.029 | 52.63 | 0.024 | 26.32 | 0.019 - 0.034 | 21.43 | 0.024 | 14.29 | 0.028 -
30 | 0.029 | 52.63 | 0.024 | 26.32 | 0.019 - 0.032 | 18.52 | 0.024 | 11.11 | 0.027 -
35 0.028 | 47.37 | 0.023 | 21.05 | 0.019 - 0.032 | 18.52 | 0.024 | 11.11 | 0.027 -

5. Conclusions

The peculiarities of computing algorithms based on combination of finite-
element method and equations of solid dynamics. The basic components of the
program complex Belinda for calculation of statics and dynamics of the rods con-
structions (as applied to railway bridges) are described. The object-oriented topology
of classes of objects and data used in the modules of complex is prepared. The
differences in sequences of static and dynamic calculations are described in detail.

As a modeling example, the dynamics of typical metallic beam span 33.6 m
in length at motion of single locomotive with various speeds is calculated. The
importance of choice of external load calculation scheme to reduce the errors in
calculation of joint dynamics railway bridge spans and locomotive is shown.

The series of analogical calculations were conducted for a freight train. The
most acceptable results are got for the scheme of loading, consisting of moving
forces group that equivalent axle loadings from rolling stock are given.

In further the research of three-dimensional dynamics of trussed girder span
bridges under the action of moving loads is planned.
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