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Abstract: 

Urbanization has led to increased traffic congestion and road traffic accidents (RTAs), significantly impacting public 
health, urban mobility, and the efficiency of transportation systems. RTAs disrupt road transport networks, reducing 

their reliability and performance metrics, which are critical for economic and social activities. This study addresses 

these challenges by integrating statistical analysis and optimization modeling to enhance the reliability of urban trans-
portation networks through targeted interventions. The proposed methodology builds upon the reliability model by 

Jovanović Dragan et al. (2011), utilizing statistical analysis of historical RTA data to evaluate transport network 

reliability. This assessment informs of a linear programming (LP) optimization framework designed to allocate inter-
vention budgets effectively. The LP model incorporates road importance, defined by traffic volume, prioritizing invest-

ments on high-impact roads to mitigate RTAs and improve overall network performance. The methodology is demon-

strated through a case study in Medellín, Colombia, a city facing significant congestion and high RTA rates (average 
100 daily). Using geolocated accident data (2017–2019) and vehicle usage metrics, two model variations were tested: 

one including road importance and another without. Both models yielded efficient solutions using standard optimiza-

tion solvers with minimal computational time. Findings demonstrate that the model incorporating road importance 
provides more targeted budget allocations, aligning better with practical priorities by focusing interventions on the 

busiest and least reliable road segments. This study highlights the value of combining RTA analysis and network 

reliability perspectives for data-driven strategic transportation planning. The approach offers actionable insights for 
policymakers and urban planners seeking to reduce accidents and enhance urban mobility through optimized resource 

allocation. Future research could expand this framework to include other disruption types (e.g., natural disasters) or 

validate intervention effectiveness through detailed simulation modeling. 
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1. Introduction 

Critical infrastructure, encompassing transportation, 

water supply, telecommunications, and energy sys-

tems, forms the backbone of modern societies, un-

derpinning economic activities and overall quality of 

life (Muriel-Villegas et al., 2016). Among these, 

transport networks play a central role in fostering 

dynamic economic development, particularly in ur-

ban areas where increasing population densities 

have intensified challenges associated with traffic 

congestion, pollution, accidents, and resource inef-

ficiencies (Jain & Jain, 2021). The reliability of 

transport networks (RTN) is thus critical for sustain-

ing economic exchanges and social interactions, di-

rectly impacting connectivity and mobility (Soltani-

Sobh et al., 2016). 

Reliability in engineering is traditionally defined as 

the probability of a system performing its intended 

function under specific conditions for a designated 

time (Bimpou & Ferguson, 2020; Muriel-Villegas et 

al., 2016). However, applying this concept to 

transport networks introduces complexities due to 

external disruptions such as natural hazards, traffic 

congestion, infrastructure failures, and notably, road 

traffic accidents (RTAs). Moreover, users’ percep-

tions of reliability, shaped by factors like travel time 

variability and connectivity, often differ from con-

ventional system-focused reliability metrics (Lam et 

al., 2014). 

Urban road networks face frequent disruptions 

caused by RTAs, which are a leading cause of fatal-

ities globally, particularly in middle-income coun-

tries like Colombia (Geneva: World Health Organi-

zation, 2018). These incidents reduce network ca-

pacity, increase travel times, compromise user 

safety, and diminish overall network reliability. Ad-

dressing these multifaceted issues requires compre-

hensive approaches that integrate accident fre-

quency analysis with strategies to enhance network 

resilience and performance. 

Research in RTN typically focuses on evaluating 

system vulnerability and optimizing connectivity 

through statistical and simulation-based models 

(Ravi Sekhar et al., 2013; Soltani-Sobh et al., 2015). 

Concurrently, studies on RTA employ data analysis 

to identify accident hotspots, predict patterns, assess 

impacts, and design preventive measures (Gutierrez-

Osorio & Pedraza, 2020; Wallace et al., 2021). 

While valuable independently, integrating these per-

spectives offers a more holistic approach, enabling 

the development of targeted strategies that simulta-

neously enhance urban mobility and reduce accident 

rates. 

This paper introduces an innovative framework that 

synergizes statistical analysis and optimization mod-

eling to address both RTN reliability and RTA fre-

quency. We adapt a statistical model to evaluate 

transport network reliability by incorporating histor-

ical RTA data as indicators of disruption. This relia-

bility assessment then serves as a key input into a 

linear programming (LP) model designed to opti-

mize the allocation of limited budgets for road inter-

ventions aimed at accident reduction. By incorporat-

ing a measure of road importance, defined by usage 

frequency (traffic volume) alongside accident inci-

dence, the proposed approach ensures efficient and 

targeted resource allocation to enhance both safety 

and network reliability. 

The methodology's practical application is demon-

strated through a case study in Medellín, Colombia. 

This city presents significant mobility challenges, 

including ranking among the most congested glob-

ally (INRIX, 2020) and experiencing an average of 

100 daily traffic accidents. Using geolocated acci-

dent data from 2017–2019 and vehicle usage met-

rics, two model variants are tested and compared: 

one incorporating the road importance factor and an-

other treating all roads equally from an importance 

perspective. Deterministic analyses illustrate the ef-

ficacy of the proposed models in guiding interven-

tion decisions to reduce accidents and improve net-

work reliability from a strategic planning standpoint. 

This study underscores the critical importance of in-

tegrating RTN and RTA perspectives into decision-

making processes for urban transportation planning. 

The findings provide actionable insights into opti-

mizing intervention budgets to enhance road safety 

and overall mobility. The paper is organized as fol-

lows: Section 2 reviews relevant literature, Section 

3 provides context and data for the case study, Sec-

tion 4 details the methodologies including the relia-

bility assessment and optimization models, Section 

5 presents experimental results, Section 6 discusses 

the findings, contributions, and limitations, and Sec-

tion 7 concludes with key takeaways and directions 

for future research 

 

2. Literature review 

The reliability and optimization of transportation 

networks are crucial areas of research, driven by the 
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increasing complexities of urban mobility and the 

significant societal costs associated with network 

disruptions. Research spans multiple facets, includ-

ing defining reliability, modeling disruptions, ana-

lyzing road traffic accidents (RTAs), and developing 

optimization strategies for network improvement. 

 

2.1. Transportation network reliability (RTN) 

RTN is often evaluated using user-centric metrics 

like travel time and cost (Ravi Sekhar et al., 2013; 

Soltani-Sobh et al., 2015). Lam et al. (2014) empha-

size the importance of RTN as a field, noting the dis-

tinction between engineering definitions of reliabil-

ity and user perceptions influenced by factors like 

travel time variability. Network vulnerability is a re-

lated concept, though lacking a universal definition 

(Muriel-Villegas et al., 2016). Practical approaches 

often measure network availability or the probability 

of uninterrupted performance. Disruptions stem 

from various sources, including infrastructure fail-

ures, natural disasters, congestion, and RTAs. 

RTAs, in particular, are frequent disruptors in urban 

environments, significantly impacting network per-

formance and safety (Geneva: World Health Organ-

ization, 2018). The model proposed by Jovanović 

Dragan et al. (2011), which forms a basis for our re-

liability assessment, specifically uses statistical 

analysis of RTAs to quantify the reliability of road 

segments, providing a direct link between accident 

occurrence and network performance metrics. 

 

2.2. Analysis of road traffic accident (RTA) 

The increasing frequency and impact of RTAs have 

spurred a significant body of research focused on un-

derstanding their causes, patterns, and consequences 

to develop effective prevention and mitigation strat-

egies (Gutierrez-Osorio & Pedraza, 2020). Studies 

often employ behavioral analysis to model accident 

determinants and predict impacts (e.g., Novikov et 

al., 2020; Rolison, 2020). Statistical modeling, in-

cluding classical techniques like binomial regres-

sion, multiple linear regression, and Poisson or Neg-

ative Binomial models (Briz-Redón et al., 2021), is 

frequently used to correlate accident frequency with 

factors such as road geometry, traffic flow, environ-

mental conditions, and driver behavior. Spatial anal-

ysis techniques are also employed to identify high-

risk locations or 'hotspots' (Pineda-Jaramillo & Ar-

beláez-Arenas, 2021). 

Recent advancements incorporate machine learning 

and data mining approaches, such as decision tree 

analysis (Figueira et al., 2017), support vector ma-

chines (Li et al., 2016), and other non-parametric 

methods (Lee et al., 2017; Bauer et al., 2021), to ex-

tract complex patterns and improve predictive accu-

racy regarding accident occurrence and severity. Re-

search also explores the effectiveness of interven-

tions, such as road design improvements (Wallace et 

al., 2021), specific strategies for developing coun-

tries (Schoeman, 2018), and governmental policies 

like congestion charging or penalty point systems 

(Green et al., 2016; Martínez-Gabaldón et al., 2020; 

Mitsakou et al., 2019). Furthermore, the impact of 

RTAs on network performance metrics like average 

travel times (Kaddoura & Nagel, 2018) and overall 

urban mobility (Sun et al., 2018) is a critical area of 

investigation. Intelligent Transportation Systems 

(ITS) play a growing role, focusing on technologies 

for accident prediction and detection to optimize 

emergency response and mitigate traffic impacts 

through user guidance (Jain & Jain, 2021; Oskarb-

ski, 2017). 

 

2.3. Optimization in transportation networks 

Optimization techniques are widely employed in 

transportation planning and management. Classical 

operations research problems find application in 

RTA contexts; for instance, the facility location 

problem is used to optimize the placement of emer-

gency services like ambulance depots considering 

accident hotspots (Castañeda & Villegas, 2017; 

Mohri & Haghshenas, 2021; Wajid et al., 2020), 

while the shortest path problem is adapted to de-

velop efficient ambulance routing models under sto-

chastic traffic conditions often caused by accidents 

(Jose & Vijula Grace, 2020; Wen et al., 2019). 

More broadly, optimization addresses resource allo-

cation, network design, and traffic management. 

Linear programming (LP), foundational to this 

study, has a long history in solving problems with 

linear objectives and constraints (Dantzig, 1957). 

The knapsack problem formulation, often solved us-

ing dynamic programming (Bellman, 1957) or LP 

for continuous versions, is particularly relevant for 

budget allocation tasks like the one addressed here. 

However, the increasing complexity of transporta-

tion systems necessitates more advanced techniques. 

Modern approaches often move beyond traditional 

LP. Metaheuristics like Genetic Algorithms (GAs), 
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Particle Swarm Optimization (PSO), and Differen-

tial Evolution (DE) are frequently used for complex, 

large-scale, or non-linear problems such as traffic 

signal control, vehicle routing, and incident detec-

tion (Srinivasan et al., 2003). For instance, Sriniva-

san et al. (2003) effectively applied PSO for traffic 

incident detection. Akopov et al. (2021) utilized a 

parallel GA for simulation-based optimization in au-

tonomous transport systems, demonstrating the syn-

ergy between metaheuristics and simulation. Non-

linear programming (NLP) addresses non-linear ob-

jectives or constraints common in traffic flow mod-

eling. Multi-objective optimization is also vital for 

balancing competing goals like minimizing travel 

time, emissions, and costs while maximizing safety 

(Sayyadi & Awasthi, 2020). While powerful, these 

advanced methods often entail greater computa-

tional cost and complexity compared to LP. 

 

2.4. Research gap and contribution 

While extensive research exists on RTN, RTA anal-

ysis, and transportation optimization independently, 

there is a need for integrated approaches that explic-

itly link historical accident data, network reliability 

assessment, and strategic budget allocation for inter-

ventions. Many optimization studies focus on oper-

ational aspects (e.g., real-time traffic control) or use 

simulation without directly grounding the optimiza-

tion objective in statistically derived reliability met-

rics based on actual accident occurrences. Further-

more, while advanced optimization techniques like 

GA and PSO offer powerful capabilities, simpler 

models like LP can be highly effective and compu-

tationally efficient for specific strategic planning 

problems, such as the budget allocation task ad-

dressed here, especially when the primary goal is to 

prioritize interventions based on clear metrics like 

historical reliability and road importance. 

This study contributes by: 

− Integrating a statistical RTA-based reliability 

assessment (adapted from Jovanović Dragan et 

al., 2011) directly into an optimization frame-

work. 

− Developing an LP model specifically for stra-

tegic budget allocation for RTA mitigation in-

terventions, incorporating road importance 

based on traffic volume. 

− Demonstrating a computationally efficient ap-

proach suitable for practical planning purposes, 

providing a clear and interpretable method for 

prioritizing investments based on data-driven 

reliability and importance metrics. 

− Providing a case study in a high-congestion, 

high-accident urban environment (Medellín), 

showcasing the practical applicability of the 

framework. 

 

3. Case study 

This study was carried out in Medellín, the second 

most populated city in Colombia. Medellín is the 

capital of the state of Antioquia and is in the Aburrá 

Valley. This valley is composed of 10 cities that 

form the Metropolitan Area. Medellín is the most 

populated city in the valley, with a population of 

nearly 2.5 million of the nearly 4 million inhabitants 

of the valley (DANE, 2019). Medellín is located in 

the center of the valley and is the city that generates 

the most employment in the entire metropolitan area, 

which makes it the city that is transited by the most 

people on weekdays. Today, Medellin ranks 22nd 

among the most congested cities in the world ac-

cording to the INRIX index, with a total of 62 hours 

lost in congestion per year (INRIX, 2020). Accord-

ing to the city's mobility survey conducted in 2017, 

Medellín is the destination of 71% of the trips that 

people made in the metropolitan area throughout the 

day, with a total average of 4.3 million daily trips by 

different means of transportation (Area Metropoli-

tana de Medellín, 2017). This excludes trips that 

pass through the city but whose end destination is 

not within it. This current reality of the city shows 

the need to work on finding ways to improve the mo-

bility situation. 

 

3.1. Data base 

In Medellin, there are different databases available. 

The information we used throughout the study is 

based mainly on the city's road infrastructure, RTA 

records, and a database of the number of vehicles us-

ing the road infrastructure.  

 

3.1.1. Roadways data 

The distribution of roads in Medellin is simple. 

There are a total of 1,030 roads distributed in differ-

ent classes. In this case study, we are specifically in-

terested in the busiest roads in the city, which are 

classified as primary roads, urban highways or city 

crossings, and secondary roads. The main reason for 

our interest in this class of roads is the fact that they 

are the roads of main use throughout the city, and on 
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which most accidents occur. The classification by 

road class is shown in Table 1. 

 

Table 1. Classification of roads in Medellin 

Type of road 
Number of 

roads 

Percentage 

(%) 

Secondary road 328 31.84% 

Primary road 260 25.24% 

Rural secondary road 255 24.76% 

Rural primary road 145 14.08% 

National first order road 15 1.46% 

Second order national 

route 

11 1.07% 

Urban highway or cross-

road 

10 0.97% 

National third order 

route 

3 0.29% 

Railroad track 3 0.29% 

Total 1,030 100.00% 

 

3.1.2. RTA data 

The accident database is obtained from the public re-

positories of the Mayor's Office of the City of Me-

dellín (Alcadía de Medellín, 2020). It includes only 

accidents occurring in the Medellín area. It does not 

include the areas of other cities that are part of the 

metropolitan area. The available data records from 

2017 to February 2021 show a total of 172,593 acci-

dents. Each record has a date, time, and location with 

coordinates and classification into 3 categories ac-

cording to its severity: accidents with injury 

(55.2%), only material damage (44.21%) or with one 

or more deaths (0.59%). 7.3% of the records have 

errors in the filling out of the location coordinates, 

so they had to be eliminated. When analyzing the 

database, it was necessary to disregard the records 

for the years from 2020 to 2021, since they show 

better results generated by the atypical period of the 

pandemic generated by Covid-19. As can be seen in-

Figure 1, the number of accumulated accidents de-

creased because of the lockdown. However, the ob-

jective of this study is to contemplate data adjusted 

to reality. Therefore, the study only includes the 

analysis of the RTA data period between the years 

2017-2019, which left 133,406 recorded accidents. 

In addition to the geographic location of each acci-

dent, the database includes some additional varia-

bles as shown in Table 2. 

 

3.1.3. Vehicle count data  

Medellín employs an advanced traffic control sys-

tem using live cameras to monitor various road con-

ditions throughout the day. These systems enable ve-

hicle counts at specific points. This information is 

considered in the study to represent road importance, 

as it quantitatively indicates the number of vehicles 

using a road daily.  

 

 
Fig. 1. Accumulated RTA over the period 2017 - February 2021 in Medellin 
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Table 1. Distribution of RTA 
Variables Number of RTA Percentage (%) 

Year 2017 45,370 34.01% 

 2018 42,781 32.07% 

 2019 45,255 33.92% 

Day Monday 19,214 14.40% 

 Tuesday 21,031 15.76% 

 Wednesday 20,257 15.18% 

 Thursday 19,899 14.92% 

 Friday 21,395 16.04% 

 Saturday 19,144 14.35% 

 Sunday 12,466 9.34% 

RTA type Crash 91,220 68.38% 

 Other 14,123 10.59% 

 Hit and run 11,802 8.85% 

 Occupants fall 11,453 8.59% 

 Rollover 4,769 3.57% 

 Fire 21 0.02% 

 Fall of an occupant 17 0.01% 

 Crash and run over 1 0.00% 

RTA location Road section 82,380 61.75% 

Intersection 24,903 18.67% 

Lot or Property 19,139 14.35% 

Roundabout 4,123 3.09% 

Elevated pass 971 0.73% 

Bridge 701 0.53% 

 Cycle Path 542 0.41% 

 Underpass 460 0.34% 

 Level crossing 92 0.07% 

 Tunnel 48 0.04% 

 Pontoon 24 0.02% 

 Crosswalk 22 0.02% 
 
 

The use of real data is crucial in this type of study, 

especially when collected via reliable sensors on the 

roads. However, using such information depends di-

rectly on the locations and number of sensors de-

ployed throughout the city. In Medellín, vehicle 

counts are available for only a few primary roads, 

which limits the ability to include other roads in the 

study if this information is required. 

Figure 2 illustrates the roads with the highest acci-

dent frequency in 2017. Given the limitations in ve-

hicle count data described above, the study neces-

sarily focused on a subset of primary roads. Conse-

quently, two modeling approaches were analyzed: 

one incorporating vehicle count information for 

available primary roads, and another excluding this 

importance factor, allowing for a comparison of re-

sults between the two methods. 

 

4. Methodology 

4.1. Data analysis 

To establish what information is useful for the de-

velopment of measurement or optimization models, 

it is essential to perform two stages of evaluation of 

the available information. Before any experimenta-

tion stage, we evaluate the available data to meet two 

essential requirements. The first focuses on testing 

the compatibility of the behavior of the data with the 

selected models. In this case, we focused on the re-

liability measurement model of the transport net-

work model, since this model is based on the as-

sumption that the distribution of RTA follows a 

Poisson distribution, or in other words, that the times 

between RTA behave following exponential distri-

bution. The second requirement focuses on data 

quality and compatibility between the different da-

tabases. In short, we evaluate the behavior, the qual-

ity of the data, and the compatibility of the different 

databases used. 
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Fig. 2. Medellin RTA Heatmap in 2017 
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4.2. Reliability transport network model 

The model used to measure the reliability of the 

transport network is proposed by Jovanović Dragan 

et al., (2011). This model successfully proposes fit-

ting Poisson distribution to describe the behavior of 

RTA events. This model considers each road as a 

complex system composed of n units or sections, 

where the interruption of traffic flow in any unit 

causes the interruption of traffic flow in the entire 

road. The model proposed for road reliability in the 

study contemplates long road sections as part of the 

complex system. Specifically, they contemplate sec-

tions between 4 and 18 km long on an interurban 

road, to measure the reliability of the whole road. In 

our case, we consider the study only of urban roads 

with extensions no longer than 16 km. Therefore, the 

use of the model for our case is defined for each 

road, and the adaptation of the model to the reliabil-

ity of a system is not used when considering the re-

liability of each section of the road. For this reason, 

we consider the road as a whole and do not specify 

sections as the objects of study. For the use of this 

model, it is assumed that the roads have an inde-

pendent probability of failure. 

According to Jovanović Dragan et al., (2011) a pro-

cess describing a Poisson distribution is character-

ized by a 𝜆 rate, which is defined as the number of 

'events' occurring per unit of time. If the events fol-

low a Poisson-type distribution, then the time be-

tween the occurrences of two events (𝑇) can be de-

scribed by an exponential distribution with parame-

ter 𝜆. Therefore, in the model adopted, all empirical 

distributions of the duration of the accident-free pe-

riod can be replaced by exponential distributions. 

The terminology used in the model is defined below. 

For more information on the model and its approach, 

please see the work of Jovanović Dragan et al., 

(2011). 

 

4.2.1. Defining the model terms 

The density function of the distribution of the time 

between two accidents 𝑓(𝑡) (𝑓𝑖(𝑡) – 𝑖𝑡ℎ) is: 

 

𝑓𝑖(𝑡) =  𝜆𝑖𝑒−𝜆𝑖𝑡         𝑤ℎ𝑒𝑟𝑒 𝜆𝑖 > 0, 𝑡 ≥ 0 (1) 

 

Distribution function 𝐹 (𝑡)(𝐹𝑖(𝑡) – 𝑖th road) of the 

random variable 𝑇  (the time between two acci-

dents), is equal to the probability that an accident 

will occur before the moment 𝑡. This function is also 

called the function of unreliability. 

 

𝐹𝑖(𝑡) =  ∫ 𝑓𝑖(𝑡)𝑑𝑡 =  ∫ 𝜆𝑖

∞

0

∞

0

𝑒−𝜆𝑖𝑡𝑑𝑡

= 1 − 𝑒−𝜆𝑖𝑡 

(2) 

 

Using the unreliability function F(t) we introduce 

the reliability function 𝑅(𝑡)(𝑅𝑖(𝑡)– 𝑖th road) , as 

the probability of a time without accidents until the 

moment 𝑡. 

 

𝑅𝑖(𝑡) = 1 − 𝐹𝑖(𝑡) = 𝑒−𝜆𝑖𝑡 (3) 

 

The mean time between two consecutive accidents 

𝑇0 (𝑇0𝑖(𝑡)– 𝑖th road) is obtained as a mathematical 

expectation of the random variable 𝑇. 

 

𝑇0𝑖(𝑡) = ∫ 𝑅(𝑡)𝑑𝑡 =  ∫ 𝑒−𝜆𝑖𝑡𝑑𝑡 = 1/𝜆𝑖

∞

0

∞

0

 (4) 

 

The accident frequency 𝑎(𝑡) (𝑎𝑖(𝑡) – 𝑖th road) is 

an important and widely used reliability feature and 

represents the measure of the current rate of acci-

dents. 

 

𝑎𝑖(𝑡) =  𝜆𝑖 = 𝑐𝑜𝑛𝑠𝑡 (5) 

 

The expected number of accidents in a certain period 

𝐴(𝑡) (𝐴𝑖(𝑡) – 𝑖th road) is calculated as: 

 

𝐴𝑖(𝑡) = 𝜆𝑖𝑡 (6) 

 

where 𝑡 – the duration of the certain period time ex-

pressed in basic time unit as 𝜆. 

The purpose of this model is to measure the reliabil-

ity of each road in each time period. Reliability will 

be a base parameter in the optimization model. 

 

4.3. Mathematical modeling of the problem 

The proposed model is grounded in the knapsack 

problem, a classic case in combinatorial optimiza-

tion. This problem was initially formalized by Dan-

tzig, (1957) and later solved using dynamic pro-

gramming techniques introduced by Bellman, 

(1957). These foundational contributions estab-

lished a framework for addressing resource alloca-

tion problems under capacity constraints. 

The knapsack problem is commonly described as 

follows: given a set of 𝑛 items, each with a value 𝑣𝑖 

and a weight 𝑤𝑖, the objective is to select a subset of 
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these items to maximize the total value without ex-

ceeding capacity 𝐶 of the knapsack. The basic ma-

thematical formulation is: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ 𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 (7) 

 

Subject to: 

 

∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≤ 𝐶 (8) 

 

𝑥𝑖 ∈ {0,1}    ∀ 𝑖 ∈ {1, … , 𝑛} (9) 

 

where: 

𝑥𝑖 is a binary variable indicating whether item i is 

selected (𝑥𝑖 = 1) or not ( 𝑥𝑖 = 0), 

𝑣𝑖  represents the value of item 𝑖, 
𝑤𝑖 is the weight of item 𝑖, 
𝐶 is the maximum capacity of the knapsack. 

For our case, we propose adaptations to the classical 

knapsack problem to address the unique characteris-

tics and requirements of the problem at hand. Given 

a set of edges, where each edge 𝑖 is a road within the 

transport network (𝑖 ∈  𝐸). Each edge is defined as 

a road and each vertex as intersection between roads, 

to represent a transportation system network. It is as-

sumed that there is independence between the fail-

ures of each edge of the graph. The reliability of an 

edge 𝑖  in scenario 𝑠  in the time 𝑡  is denoted as 

𝑅𝑖
𝑠(𝑡) . 𝐼𝑖  is defined as the importance of road 𝑖 , 

where this parameter is represented by the average 

number of vehicles traveling on the road per 15-mi-

nute interval. There is an intervention cost 𝐶𝑖  for 

each road 𝑖 that by its nature can have a stochastic 

behavior, therefore a random value is defined for 

this parameter with investment limits between 

$10,000 and $25,000 dollars. In this case, the value 

of this parameter could be defined depending on the 

length of the road. However, in many cases, road in-

terventions to mitigate accidents can be imple-

mented at a junction or a signpost, and for this rea-

son, it is difficult to ensure that the cost of the road 

intervention is proportional to its length. Therefore, 

this parameter is defined under the condition of ran-

domness. A constant budget of 𝐵 is defined by the 

city's mayor's office for road interventions. This 

budget is specifically defined with the objective of 

mitigating road accidents. In this case, a theorical 

value of $250,000 dollars is established to carry out 

the exercise of the case.  

In our case, the decision variable is continuous, rep-

resenting the percentage of intervention allocated to 

each road segment. This formulation significantly 

reduces the computational complexity of the prob-

lem, transitioning it from a combinatorial optimiza-

tion problem to a linear optimization problem. By 

allowing fractional values, the model achieves 

greater flexibility and computational efficiency 

while maintaining the precision required for effec-

tive decision-making. This variable is defined as the 

percentage of fixed intervention cost consumption 

for each road. This variable is denoted as 𝑥𝑖.  

To increase the reliability of the transportation sys-

tem, it is necessary to increase the reliability of each 

road independently, or at least to increase the relia-

bility of the worst-measured roads. With this objec-

tive, an optimization model is defined that seeks to 

propose an efficient use of the transportation net-

work intervention budget (𝐵), using a variable (𝑥𝑖) 

that defines an intervention percentage of the most 

important (𝐼𝑖) and least reliable roads. Due to the na-

ture of the problem, and because of the behavior 

over time of the road reliability parameter, the model 

defined includes a set 𝑆  of three scenarios repre-

sented in the years 2017, 2018 and 2019. Table 3 

summarizes the terms used in the mathematical for-

mulation of the problem. 

Given the restrictions of available data of the vehicle 

count, the parameter included in the problem was the 

importance of the road. Two linear programming 

models were defined for testing and finding solu-

tions. Only the first of these includes the importance 

parameter. The difference lies in the information that 

can be used in one model and the other. The first 

uses accident information that concentrates on a to-

tal of 61 of the primary roads. The second model is 

used considering a total of 118 primary roads that 

account for around 75% of the accidents that were 

generated in the various analysis periods. The first 

mathematical model is represented in the group of 

equations (10) – (12). The second model is repre-

sented in equations (11) – (13) 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝐼𝑖 ∙ (1 − 𝑅𝑖
𝑠(𝑡)) ∙ 𝑥𝑖

𝑡∈𝑆𝑖∈𝐸

 (10) 
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Table 2. Sets, indexes, parameters and decision variables for mathematical formulation 
Type Notation Definition 

Sets 𝐸 Set of edges 

𝑆 Set of scenarios of time intervals S = {2017, 2018, 2019} 

Indexes 𝑖 Indexes used to represent every edge or road, i ∈ E 

𝑠 Indexes used to represent every scenario, s ∈ S 

Parameters 𝑅𝑖
𝑠(𝑡) Reliability of road 𝑖 in the scenario 𝑠 

𝐼𝑖 Importance of road 𝑖. 
𝐶𝑖 Constant cost of intervention of a road 𝑖. 
𝐵 Maximum intervention budget of the road network 

Decision variable 𝑥𝑖 Indicates the percentage intervention of road 𝑖. 

 

Subject to: 

 

∑ 𝐶𝑖 ∙ 𝑥𝑖

𝑖∈𝐸

≤ 𝐵 (11) 

 

0 ≤ 𝑥𝑖 ≤ 1        ∀ 𝑖 ∈ 𝐸 (12) 

 

Equation (10) represents the objective function of 

the model, which seeks to maximize the intervention 

of the most important and least reliable roads. Equa-

tion (11) defines the B budget consumption con-

straint available for road interventions. The group of 

equations (12) defines the order interval in which 

each decision variable defines its value. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ ∑(1 − 𝑅𝑖
𝑠(𝑡)) ∙ 𝑥𝑖

𝑡∈𝑆𝑖∈𝐸

 (13) 

 

The only difference in this second model is the 

change in the objective function (13) whereby it 

does not include parameter 𝐼𝑖 , and the restrictions 

are preserved as those set out in equations (11) and 

(12). In general, the model is the same, what really 

changes is the information used in this model versus 

the initial one. In solving this model, a more signifi-

cant result can be obtained since it includes most of 

the accident data for the periods studied. 

 

4.4. Algorithm for solving the optimization prob-

lem 

The optimization model formulated in Section 4.3 

(equations 10-13) is a Linear Programming (LP) 

problem. The objective function of the model, which 

seeks the intervention of the most important and 

least reliable roads, is seeking to maximize the RTN, 

subject to a budget constraint and bounds on the in-

tervention variables. Given the structure of the prob-

lem (linear objective function and linear 

constraints), standard and efficient algorithms exist 

to find the optimal solution. 

 

4.4.1. Solution algorithm 

The problem was solved using a standard LP solver. 

The general steps involved are: 

I. Input Data Preparation: Gather necessary data, 

including: 

− Reliability values for each road segment i 

in each scenario 𝑠 (𝑅𝑖
𝑠(𝑡)), calculated as 

described in Section 4.2. 

− Importance factor for each road segment 𝑖 
(𝐼𝑖), based on average vehicle usage. 

− Intervention cost for each road segment 𝑖 
(𝐶𝑖), defined stochastically within limits or 

based on specific estimations. 

− Total available budget 𝐵. 

− Set of road segments 𝐸 and scenarios 𝑆. 

II. LP Model Formulation: Construct the mathe-

matical model as defined in equations (10)-

(13). 

III. Solver Execution: Input the formulated LP 

model into a dedicated optimization solver. For 

this study, the CPLEX® Optimizer was utilized 

within a Python 3.6 environment. CPLEX® 

employs highly efficient algorithms (such as 

the Simplex method or interior-point methods) 

to find the guaranteed optimal solution for LP 

problems. 

IV. Output Results: The solver returns the optimal 

values for the decision variables 𝑥𝑖, represent-

ing the optimal percentage of the intervention 

budget to allocate to each road segment 𝑖  to 

maximize the objective function while respect-

ing the budget constraint. The optimal objective 

function value 𝑍 is also provided. 

The sequence of steps involved in the solution algo-

rithm is illustrated in Figure 3. 
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Fig. 3. Flowchart of the Solution Algorithm 
 
 

4.4.2. Computational details 

The LP model was implemented using Python 3.6, 

interfacing with the CPLEX® optimization solver. 

Due to the linear nature of the problem and the effi-

ciency of modern solvers like CPLEX, optimal so-

lutions for the case study were obtained rapidly, typ-

ically in under one second of computation time on a 

standard desktop computer. This computational ef-

ficiency makes the approach practical for repeated 

use in planning scenarios. The scientific novelty lies 

not in the LP solution algorithm itself (which is 

standard), but in the integration of the RTA-based 

reliability metric within this specific optimization 

framework for strategic intervention planning. 

 

5. Results 

5.1. Data analysis results 

This stage of data analysis has two objectives. 

Firstly, to know the behavior and consistency of the 

data with reality and evaluate the fulfillment of the 

assumption considered in the reliability measure-

ment model used. Secondly, to evaluate the compat-

ibility of the various databases used in this work. 

 

5.1.1. Behavioral analysis of RTA data 

As a first step in the analysis of the behavior of the 

RTA data, we wanted to observe the behavior of ac-

cidents throughout the week, to evaluate whether 

this is related to traffic congestion during peak 

hours. For this purpose, several box plots were con-

structed (see Figure 4). 

In these plots, similar behaviors can be observed 

throughout the weekdays, with a marked difference 

in the behavior during weekends. During the week-

days, there are peaks of accidents during the peak 

hours of the day, that is, during the morning hours 

between 6 and 7 a.m. when people travel to their 

workplaces, the data shows a median of between 7 
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and 8 RTA per hour. After that, it maintains stability 

with a sustained frequency and a median between 3 

and 5 accidents per hour, until another peak of acci-

dents occurs at midday, between 12 and 13 hours 

with a median of between 6 and 7 RTA per hour. 

After midday, it shows a more irregular behavior 

with a median of between 6 and 10 RTA per hour. 

The worst peaks are at the time of returning home, 

with a median of between 9 and 12 RTA per hour, 

with greater variability between 5 p.m. and 7 p.m. 

This demonstrates the concordance between peak 

hours of congestion and peak accident rates on 

weekdays. On the other hand, Saturdays present an 

unexpectedly high frequency, with an increasing be-

havior from 6 am, reaching its highest peak in the 

midday hours, between 12 and 1 pm. The highest 

peak on Saturdays ranges between 8 and 12 acci-

dents per hour with a median of 9 accidents. Sundays 

have a lower frequency of accidents during the day 

but a higher frequency than other days during the 

early morning hours. According to this behavior, 

there is only a marked difference in the behavior of 

Sundays throughout the data. However, it was de-

cided to use the total information, since Sundays ac-

counted for a total of 9.34% of all data (see Table 2). 

The second objective of the data analysis stage is to 

evaluate compliance with the assumption of the 

model for measuring the reliability of the transpor-

tation system. Under this model, the authors Jo-

vanovic Dragan et al. (2011) propose that the fre-

quency of RTA follows a Poisson distribution or, 

equivalently, the times between accidents follow an 

exponential distribution. To validate this assump-

tion, we applied a Kolmogorov-Smirnov goodness-

of-fit test to the inter-accident time data for each of 

the objects of study, i.e. each road. The results of the 

Kolmogorov-Smirnov test show that the times be-

tween each RTA in 101 (87.83%) of the 115 paths 

follow an exponential distribution with 95% confi-

dence. With these results, for simplification, it is as-

sumed that all roads meet the assumption of the 

model and follow a distribution of this class. There-

fore, the assumption of Jovanovic Dragan et al. 

(2011) is met with the data under analysis. To show 

some examples of the behaviors of the times be-

tween RTA, several histograms of some roads are 

shown in Figure 5. 

 

5.1.2. Compatibility between databases 

The initial focus of the proposal was to develop an 

optimization model where two kinds of parameters 

per road were considered. The first parameter was 

the reliability of the different roads belonging to the 

transportation network, considering the interruption 

generated by traffic accidents in the system. The sec-

ond parameter was focused on representing the im-

portance of the road, which was achieved by includ-

ing the utilization factor of each road by counting the 

number of vehicles transiting it in the network. 

However, because the counts of vehicles using each 

road are only available for 61 of the 260 primary 

roads (see Table 1), it was necessary to section the 

available data and propose two model approaches, 

the first one considering this importance parameter, 

and the second one ignoring this parameter and only 

taking into account the road reliability parameter. 

 

5.2. Reliability measurement model results 

To test the model, accident data for the year 2017 

was selected and the necessary data is generated to 

define the reliability of the primary roadway group 

working with hourly intervals. The results are shown 

to be consistent. For the 1-week interval, 7 days x 24 

hours were used, and for the 1-year interval, 365 

days x 24 hours were used. The Table 4 shows the 

roads with the highest frequency of accidents (roads 

1-10), and those with the lowest frequency of acci-

dents (roads 109-115). 

When comparing the results for the reliability of 

the roads one by one as an independent road for a 

time segment of 1 week, very similar behaviors 

are observed to when the reliability of the same 

roads are compared depending on the different 

years of the database. This can be observed in Fig-

ure 6. The results are shown to be consistent with 

the reality of the database. Roads with a high fre-

quency of accidents have a reliability close to 0. 

On the contrary, roads with a low frequency of ac-

cidents have a reliability close to 1 in a one-week 

interval. 

A comparison of the reliability of sections at various 

interval lengths shows that most of the results be-

come closer to a 0 value as the time interval gets 

longer. This can be explained by the number of ac-

cidents that occur; the longer the time interval con-

sidered, the higher the frequency of accidents, so the 

reliability tends to fall rapidly. See Figure 7. 
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Fig. 4. Box plot of RTA in Medellín (2017-2019) during the hours and days of the week 
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Fig 5. Histograms of the behavior of the times between RTA of some roads 
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Table 3. Reliability model test summary. Source: Own definition 

Road (𝒊) Name No. RTA (2017) 𝑻𝟎𝒊(𝒉) 𝝀𝒊 Reliability 1 week Reliability 1 year 

1 CR 80 1776 4.93 0.20 0.0000000000000016 0.0000000000000000 

2 CR 65 1695 5.17 0.19 0.0000000000000076 0.0000000000000000 

3 CR 43 1502 5.83 0.17 0.0000000000003090 0.0000000000000000 

4 CR 52 1471 5.96 0.17 0.0000000000005599 0.0000000000000000 

5 CR 64 C 1420 6.17 0.16 0.0000000000014891 0.0000000000000000 

6 CL 44 1404 6.24 0.16 0.0000000000020238 0.0000000000000000 

7 CR 63 1291 6.79 0.15 0.0000000000176744 0.0000000000000000 

8 CL 10 1026 8.54 0.12 0.0000000028478192 0.0000000000000000 

9 CR 48 1014 8.64 0.12 0.0000000035847563 0.0000000000000000 

10 CR 46 965 9.08 0.11 0.0000000091743956 0.0000000000000000 

... ... ... ... ... ... ... 

109 CL 103 A 6 1460.00 0.00 0.8913050935220120 0.0024787521766664 

110 CL 18 C 5 1752.00 0.00 0.9085635792245130 0.0067379469990855 

111 CR 45 C 5 1752.00 0.00 0.9085635792245130 0.0067379469990855 

112 Tv 75 4 2190.00 0.00 0.9261562437967510 0.0183156388887342 

113 CR 11 C 3 2920.00 0.00 0.9440895579986100 0.0497870683678639 

114 CL 52 B 2 4380.00 0.00 0.9623701178843570 0.1353352832366130 

115 CL 72 A 2 4380.00 0.00 0.9623701178843570 0.1353352832366130 

 

 
Fig. 6. Reliability of the roads for a time interval of 1 week 
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Fig. 7. Reliability of the roads for different time intervals 
 

 

5.3. Optimization model results 

The model was implemented in Python 3.6 and the 

mathematical model was solved with CPLEX Studio 

IDE optimizer 20.1.10. The experiments were exe-

cuted on a 2.4 GHz Ryzen 7 computer with 8 GB of 

RAM, running on Windows 10 Professional Operat-

ing System. The computational requirement of the 

problem is very low, and the efficiency of both mod-

els in solving the problems posed for the case is very 

high. For both instances, a solution was obtained in 

less than 1 second. 

To develop further experimentation, reliability and 

cost parameters are considered under different re-

search scenarios. The reliability parameters are eval-

uated considering the results at an interval of 1 week 

for each of the real scenarios contemplated (years 

2017-2019). Meanwhile, the cost parameter is eval-

uated under two forms of generation. On the one 

hand, it was tested using a fixed value of $20,000 

dollars, and on the other hand, tests were performed 

by defining this parameter randomly with values be-

tween $10,000 and $25,000 dollars. In many cases, 

the cost of interventions or road improvements is not 

known, as these costs are defined after going 

through stages of analysis and design of changes. 

One of the purposes of this kind of model is to pro-

pose how to make decisions before the intervention, 

identifying how to invest the budget for road im-

provement to improve RTN. Therefore, it is useful 

to test random budget values and evaluate the re-

sults. 

 

5.3.1. Model 1 results (with roads importance) 

In this case, only 60 primary roads are considered 

for intervention. To work with this model, a prior 

procedure of normalization of the values of the im-

portance parameter is used, to bring all the parame-

ters participating in the objective function to close 

values. If this type of process is not carried out, the 

solution will be marked by the weight preference of 

a parameter, and it would not be necessary to use 

models of this type for decision-making.  

When working with a fixed value cost ( 𝐶𝑖 =
$20,000 dollars) it is evident that the best interven-

tion alternatives are marked by the importance pa-

rameter as, despite taking a short time interval of 1 

week for experimentation, having normalized this 

parameter, they still have values much higher than 

the reliability value of each pathway. For this reason, 

the optimal decision is defined as intervention alter-

natives for those roads that show the highest value 

of the importance parameter. 

This can be visualized in Figure 8 where the blue 

columns are shown as the values of the decision var-

iables. In this case, it is clearly shown that the vari-

ables tend to define the intervention in the roads that 

show the highest value of importance. 

When working with random cost values, the changes 

are shown with respect to the number of roads where 

interventions are to take place. However, the ten-

dency to select the roads that have the highest value 

of the importance parameter is preserved. See Fi-

gure 9. 
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Fig. 8. Optimization model 1 results in cost fixed (Ci = $20.000) 

 

 
Fig. 9. Optimization model 1 results with random cost value 

 

5.3.2. Model 2 results 

For instance, working under this model there are 115 

primary roads under study. The results when using a 

fixed cost of the intervention ($ 20,000 ) do not 

yield significant findings, the model simply selects 

the pathways that present less reliability in the time 

interval used (1 week). See Figure 10. 

The opposite occurs when defining the cost parame-

ter with randomness. Here, the results show a greater 

dispersion in the decision on the roads where inter-

ventions should be done to achieve an increase in the 

RTN with the available budget.  

In this case, the model decides both not necessarily 

to intervene on the roads with less reliability, and to 

use all the available budget. This result shows more 

consonance with what occurs and is often obviated 

as an alternative. See Figure 11. 

 

6. Discussion 

This study introduced an integrated framework com-

bining statistical reliability assessment based on 

Road Traffic Accidents (RTAs) with a Linear Pro-

gramming (LP) optimization model for allocating 

intervention budgets in urban transport networks. 

The case study in Medellín demonstrated the practi-

cal application and efficiency of this approach.
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Fig. 10. Optimization model 2 results with fixed cost value 

 

 
Fig. 11. Optimization model 2 results in random cost value 

 

6.1. Interpretation of findings 

The results indicate that the proposed methodology 

effectively prioritizes road segments for intervention 

based on their historical reliability (derived from 

RTA data) and importance (derived from traffic vol-

ume). The comparison between the model incorpo-

rating road importance ( 𝐼𝑖 ) and the one without 

showing that explicitly considering traffic volume 

leads to a more targeted allocation strategy. The im-

portance-weighted model focuses resources on 

roads that are not only less reliable (higher accident 

rates relative to exposure) but also carry significant 

traffic, aligning better with the practical goal of 

maximizing the impact of limited budgets on overall 

network performance and safety for the largest num-

ber of users. The rapid computation time (<1 second 

using CPLEX) confirms the suitability of the LP for-

mulation for strategic planning purposes, allowing 

for easy scenario analysis. 

6.2. Contribution to knowledge and practice 

The primary contribution of this work lies in the 

methodological integration of RTA analysis, 

transport network reliability (RTN) assessment, and 

optimization for strategic resource allocation. While 

these fields are well-established, this study provides 

a clear, data-driven, and computationally efficient 

framework specifically linking historical accident 

data to budget allocation decisions aimed at improv-

ing network reliability. It operationalizes the con-

cept of reliability, as influenced by RTAs (adapting 

Jovanović Dragan et al., 2011), into a tangible input 

for an optimization model. 

For practice, this framework offers urban planners 

and transport authorities a valuable tool for: 

− Data-Driven Decision Making: Moving beyond 

subjective assessments or simple hotspot map-

ping to prioritize interventions based on quan-

tified reliability and importance. 
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− Efficient Budget Allocation: Ensuring limited 

resources are directed towards interventions 

likely to yield the greatest improvements in 

safety and network performance. 

− Strategic Planning: Providing a repeatable and 

adaptable methodology for medium-to-long-

term planning of road safety investments. 

 

6.3. Advantages and limitations 

Advantages: 

− Integration: Combines RTA data, reliability 

concepts, and optimization seamlessly. 

− Data-Driven: Bases decisions on historical ac-

cident patterns and traffic volumes. 

− Targeted Interventions: Incorporating road im-

portance focuses efforts on high-impact seg-

ments. 

− Computational Efficiency: The LP formulation 

is solved quickly, facilitating practical use and 

scenario testing. 

− Ease of understanding: The model structure and 

inputs are relatively straightforward compared 

to more complex simulation or machine learn-

ing approaches. 

Limitations: 

− Static Approach: The model relies on historical 

data and does not dynamically simulate traffic 

flow or predict the precise effect of interven-

tions on future accident rates or network condi-

tions. The effectiveness of an intervention (𝑥𝑖) 

is implicitly linked to cost and its impact on the 

objective function via the reliability term, but 

the causal mechanisms of accident reduction 

are not modeled. 

− Lack of Simulation Validation: the study does 

not include microscopic traffic simulation to 

validate the operational impact of the proposed 

intervention plan on traffic flow and accident 

likelihood under dynamic conditions. While 

simulation is a powerful tool, it represents a sig-

nificant undertaking requiring detailed network 

data, calibrated models (traffic flow, driver be-

havior, accident causation), and substantial 

computational resources. The focus of this 

study was on the strategic allocation framework 

itself, based on historical data analysis and op-

timization logic. Validating the real-world ef-

fectiveness of specific interventions identified 

by the model would require subsequent empir-

ical study or simulation, which was considered 

beyond the scope of this initial methodological 

investigation. Optimization ensures the best al-

location according to the model's objective and 

constraints, relying on the validity of the input 

reliability metrics derived from historical data. 

− Model Assumptions: The reliability model as-

sumes independence between edge failures (ac-

cidents). The optimization model assumes in-

tervention costs are known (or can be reasona-

bly estimated) and that the impact on reliability 

(as captured in the objective function) is appro-

priately represented. The relationship between 

the intervention variable 𝑥𝑖 and actual reliabil-

ity improvement is simplified. 

− Data Dependency: The quality and granularity 

of RTA and traffic volume data directly impact 

on the model's output. 

− Scope of Reliability: The current reliability 

metric is based solely on RTAs. Other factors 

impacting reliability (e.g., congestion unrelated 

to accidents, weather, infrastructure failures) 

are not included. 

 

6.4. Quantifying impact and scenario conditions 

The current study demonstrates the allocation strat-

egy but does not quantify the exact resulting increase 

in network reliability or decrease in accident proba-

bility. Such quantification would ideally require fol-

low-up analysis, either through empirical implemen-

tation and monitoring or through detailed simulation 

modeling (as discussed above). The model predicts 

which allocation maximizes the objective function 

(a proxy for improving reliability on important 

roads) under the given budget. The results hold un-

der the conditions represented by the input data (Me-

dellín, 2017-2019 RTA and traffic patterns) and the 

model's assumptions. Different budget levels (𝐵) or 

changes in RTA patterns or traffic volumes ( 𝐼𝑖 ) 

would lead to different optimal allocation plans, 

which can be explored through sensitivity analysis 

using the model. 

 

6.5. Future research directions 

Future research should prioritize addressing the 

identified limitations and extending the current 

framework. Key directions include: (i) Integrating 

dynamic traffic simulation models to rigorously val-

idate the operational impact of the strategically allo-

cated interventions on traffic flow and accident like-

lihood. (ii) Developing more comprehensive 
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reliability metrics that incorporate multiple disrup-

tion types beyond RTAs, such as recurrent conges-

tion, weather events, and infrastructure failures. (iii) 

Employing advanced optimization techniques, in-

cluding stochastic and robust optimization, to more 

explicitly handle the inherent uncertainties associ-

ated with intervention costs, RTA prediction, and in-

tervention effectiveness. (iv) Conducting empirical 

studies, such as before-and-after analyses, to meas-

ure the real-world impact of interventions imple-

mented based on the model's recommendations. (v) 

Extending and validating the framework in diverse 

urban contexts worldwide to assess its generalizabil-

ity and adaptability. 

 

7. Conclusions 

This study addressed the critical challenge of en-

hancing urban transport network reliability, fre-

quently compromised by road traffic accidents 

(RTAs), through the development and application of 

an integrated analytical framework. We successfully 

combined a statistical assessment of network relia-

bility, derived from historical RTA data using an ad-

aptation of the model by Jovanović Dragan et al. 

(2011), with a linear programming (LP) optimiza-

tion model designed for the strategic allocation of 

intervention budgets. 

The practical applicability and efficiency of this in-

tegrated methodology were demonstrated via a case 

study in Medellín, Colombia, a city characterized by 

high traffic congestion and RTA rates. Key findings 

revealed that the LP model provides optimal alloca-

tion solutions rapidly, confirming its suitability for 

planning purposes. Furthermore, the results under-

scored the significant benefit of incorporating a road 

importance factor (based on traffic volume) into the 

optimization objective; this led to more targeted in-

vestment strategies that prioritize interventions on 

road segments exhibiting both low reliability (high 

accident impact) and high usage, aligning resource 

allocation more closely with practical goals of max-

imizing network-wide safety and performance im-

provements. 

The primary contribution of this research lies in its 

methodological integration, offering a transparent, 

data-driven, and computationally efficient tool for 

urban planners and transport authorities. This frame-

work moves beyond traditional RTA hotspot analy-

sis by explicitly linking accident data to network re-

liability and optimizing intervention budgets based 

on both risk and road importance. It provides action-

able insights for strategic decision-making aimed at 

mitigating RTAs and enhancing overall urban mo-

bility. 

While the proposed framework offers significant ad-

vantages, key limitations should be acknowledged, 

including the static nature of the model based on his-

torical data and the assumptions inherent in the reli-

ability and optimization formulations. Notably, as 

discussed, this study did not incorporate dynamic 

traffic simulation to validate the operational impacts 

of the proposed interventions, representing an im-

portant avenue for future work. 

Building on this research, future studies should fo-

cus on several key areas. Firstly, validating the ef-

fectiveness of the strategically allocated interven-

tions through detailed microscopic traffic simulation 

or empirical before-and-after studies is crucial. Sec-

ondly, enhancing the reliability model to incorporate 

other sources of network disruption (e.g., conges-

tion, weather events, infrastructure failures) would 

provide a more comprehensive assessment. Thirdly, 

exploring advanced optimization techniques, such 

as stochastic or robust optimization, could better ad-

dress uncertainties inherent in RTA occurrence, in-

tervention costs, and effectiveness. Finally, applying 

and comparing the framework across diverse urban 

contexts globally would further establish its robust-

ness and generalizability. This integrated approach 

holds considerable potential for improving the 

safety, reliability, and efficiency of urban transpor-

tation systems worldwide. 
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