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Abstract

The paper presents a comparative study of iterative solvers for eigen- problems, which
arise e.g. in solid mechanics or structural analysis. We consider problems obtained by
discretization of elliptic and self-adjoint partial differential operators. Typically, only a
few of the smallest eigen- values of these problems are to be computed. We discuss var-
ious gradient based preconditioned eigensolvers which make use of algebraic multigrid
preconditioning. We present algorithms together with numerical results. Performance
characteristics are derived by a comparison with the solution of test problems. We show
that known advantages of algebraic multigrid preconditioning (e.g. for boundary-value
problems with large jumps in the coefficients) transfer to the eigensolvers considered
here.

1. Introduction

We consider the generalized eigenvalue problem

Av = λMv, A,M ∈ Rn×n, λ ∈ R, v ∈ Rn (1)

arising from a finite element discretization of an elliptic and self-adjoint partial
differential operator. The stiffness matrix A and the mass matrix M are symmetric
positive definite matrices. Many applications demand a high accuracy, therefore the
discretization results in a large matrix eigenproblem. Here, the task is to compute a
few of the smallest eigenvalues and their corresponding eigenvectors of the pencil
(A,M). For this reason we consider a class of preconditioned gradient type iterations.
These methods are known to work very well for this type of eigenproblems, [1, 2, 3,
8]. Frequently, geometric multigrid preconditioning is applied to such problems. For
these problems such methods can have nearly optimal computational complexity.
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However, recent publications suggest algebraic multigrid (AMG) as a convenient
choice for this class of problems [3, 6, 10]. AMG works on matrix information
only and can be regarded as a gridfree process. This turns out to be an advantage
if we consider complex domains or unstructured meshes because the geometric
approach highly depends on the grid structure. The paper is organized as follows:
Section 2 contains some remarks on the AMG method and its application as a
preconditioner. Further each of the algorithms is presented. Then, Section 3 show
results and performance characteristics for test problems, in particular for problems
with varying coefficients.

2. Overview of Algorithms

In this section we examine the essential tools needed for the construction of the
algorithms. Basically, we obtain them by applying a Rayleigh-Ritz procedure to a
certain subspace. The choice of this subspace is crucial, and the precon- ditioned
residuals of a eigenpair (θ, v) provides important update information.

The preconditioned residual d for a given eigenpair and matrix pair (A, M)
reads

d = B − 1(Av − Mvθ) (2)

Formally, B−1 denotes the action of an abstract preconditioner. Here this action will
be carried out by AMG. In the case of subspace iteration with a set of approximations
a blockwise formulation reads

D = B−1(AV − MVΘ) (3)

with V being a matrix whose columns contain the approximated eigenvectors and
Θ being a matrix with the eigenvalue approximations on the diagonal.

The next subsection gives a rough overview of AMG by explaining the structural
principles. Afterwards the way of using the obtained preconditioned residuals within
the Rayleigh-Ritz procedure is explained and some algorithms are dis- cussed and
numerically tested.

2.1. Algebraic Multigrid

All of the eigensolvers use the algebraic multigrid (AMG) routine as a black-box
operation to compute the preconditioned residuals, i.e. Equation (2). Never- theless
we will recollect general working principles. Unlike most geometric approaches a
main property of AMG is the independence of an underlying geometry. As a grid free
process it becomes very attractive for unstructured meshes or if no grid information
is available. The AMG method divides sharply into two parts, namely the setup
phase and the solution phase. The setup phase serves to construct the hierarchy
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and the neccessary operators. The solution phase then provides the approximated
solution of the system of equations.

A generic two-grid correction step for the equation Au = f is sketched in Pro-
cedure 1. Two consecutive levels Ωh and ΩH are considered where h denotes the
fine grid and H the coarse one. Moreover, the operators Ah (discrete formof A),
the restriction operator RH

h (to transfer quantities from fine to coarse grid), the
prolongation operator Ph

H (to transfer quantities from coarse to fine grid) and a
smoother S are assumed to be given. With AH := RH

h Ah Ph
H and an approximation

uh on Ωh a two-grid correction step, cf. Procedure 1 below, can be applied.

An extension of Procedure 1 to a multigrid process works in a straightforward
way. In order to approximately solve AHeH = rH in step (4) the two grid scheme is
called recursively. Algorithmic variants are the V-cycles or W-cycles, see [5].

The construction of the hierarchy, precisely the coarsening process plays an
important role for the efficiency of AMG. Several suggestions can be found in the
literature depending on the type of problem that is considered. In the following
we focus on two approaches. The first one makes use of “classical” coarsening
suggested by Stüben [10, 11]. This method is provided by an algebraic multigrid
toolbox implemented by Jane Cullum, Menno Verbeek and Wayne Joubert. The
second approach applies the method of smoothed aggregation based AMG that is
used by means of the ML package [4, 12, 13]. Both methods are regarded to work
for these class of problems. The effects on the coarsening process are exposed in
Section 3.
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2.2. Subspaces and Algorithms

With the additional information gained by the computed preconditioned resid-
uals as described in the previous section we can improve the current eigenpair
approximations. This is done by the Rayleigh-Ritz procedure that is outlined in
Procedure 2, see [9]. This procedure computes the (in some sense) optimal approx-
imations for the smallest eigenpairs (θi, vi), i= 1, . . . , s in a subspace Z spanned
by the columns of the input matrix Z ∈ Rn×s. Hence the choice of Z is significant
and furthermore it will classify the algorithms.

With these tools, the AMG routine and the Rayleigh-Ritz procedure, we can
form the algorithms. As already mentioned we consider gradient based itera- tions,
i.e. gradient based iterations for the Rayleigh quotient ρ(x). The latter reads

ρ (x) =
(x, Ax)
(x,Mx)

and therefore the gradient with respect to x is given by

∇ρ (x) =
2

(x,Mx)
· (Ax − ρ (x) M

x)

where (·, ·) denotes the euclidean inner product. If we reconsider Equation (2) we
realize that the preconditioned residuals are strongly related to the gradient of the
Rayleigh quotient. They can be regarded as preconditioned gradient vectors.

The first algorithm uses a simple correction of the Ritz vectors in the negative
direction of the preconditioned residuals. Formally, this reads
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Vk+1 = Vk − B−1(AV k − ΘMVk)

where k denotes the iteration index. Afterwards the new Ritz pairs are com- puted
by the Rayleigh-Ritz procedure applied to Z = Vk+1. This iteration is known as
preconditioned inverse iteration (PINVIT). It is sketched in Alg. 1.

Step PINVIT-(3) applies the AMG method that computes the preconditioned
residuals. For each Ritz pair (θ(i)

k , v
(i)
k ) that does not meet the convergence condi-

tion a single V-cycle is performed. Step PINVIT-(6) marks Ritz pairs that fulfill the

convergence condition // Avk (i) −θk (i) vk (i) //2 ≤ tol. Already converged Ritz pairs
are used further for the orthonormalization process but are not taken into account
for a new computation of residuals in step PINVIT-(3). The algorithm stops if the
number of requested eigenpairs is gained.

Basically this algorithm, as well as the following, consists of an inner and outer
iteration. The inner one is formed by the computation of the preconditioned residuals
done by the AMG routine, cf. Equation (2). The outer iteration is the determination
of new Ritz pairs by the Rayleigh-Ritz procedure. Hence, AMG is used only to
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obtain new information (preconditioned residuals) for improvement of the current
Ritz approximations.

The second algorithm implements the method of preconditioned steepest descent
(PSD), see Alg. 2. In contrast to Alg. 1 the matrix Z is formed in such a way
that the columns contain the current Ritz vectors and the preconditioned residuals.
Therefore Z(∈ Rn×2s) grows in size and the computational costs for solving the
projected eigenproblem do grow as well. Nevertheless, a larger subspace results in
better approximations for the Ritz pairs. And this, finally, in a faster convergence as
the examples will show.

A further extension of the subspace spanned by Z leads to the locally op-
timal blockwise preconditioned conjugate gradient method (LOBPCG), introduced
by Knyazev [7], which is sketched in Alg. 3. Here we enlarge the subspace to which
the Rayleigh-Ritz method is applied by the previous iterates Vk−1.
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The extension necessitates a modification in step LOBPCG-(4) and step LOBPCG-
(5). If k= 1 no previous iterate exists. We obtain them by inserting one step of the
PSD method. Step LOBPCG-(6) then computes the sets of new and previous Ritz
vectors. Again, this increases the number of operations per step. A further extension
of the subspace spanned by Z with older iterates leads to “higher order” schemes.
Similiar to LOBPCG, the sequence of older iterates has to be computed by proper
algorithms of “lower order”.
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3. Results

In order to validate the algorithms we consider the following two dimensional
test problem

−∇ · (ε∇u) = λu
u = 0 on Γ1
∂u
∂n

on Γ2

(4)

on a missing wedge unit circle Ω = {(t, ϕ); t ∈ [0,1], ϕ ∈ [0,2π − α]} for α >0.
The boundaries are

Γ1 ={(t, ϕ) : t ∈ [0,1], ϕ = 0} and {t = 1, ϕ ∈ [0,2π − α]}
Γ2 = {(t, ϕ) : t ∈ [0, 1], ϕ = 2π − α}

The domain Ω for the angle α = π/12 is shown in Figure 1 on the left.

3.1. Test Problem

The analytical solution of equation (1) with ε ≡ 1 is given by

u j,l(t, ϕ) = c · sin (ν(j, α) ϕ) · Jν( j,α)(ω j,lt), j, l= 0,1, ...

Fig. 1. Domain and two smallest eigenmodes

with

υ( j, α) =
j + 1

2

2 − α
π

and Jν( j,α) being the Bessel functions of first kind and fractional order ν(j, α). The
exact eigenvalues are the squares of the positive zeros (ω j,l)2, ( j, l = 0, 1, ...) of
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Jν( j,α). The smallest eigenvalues are given in the first column of Table 1. A surface
plot of the eigenmodes corresponding to the two smallest eigenvalues are depicted
in Figure 1.

For the computation we consider a finite element discretization of (1) resulting
in matrices A and M of size n= 297078. We apply the presented algorithms PINVIT,
PSD and LOBPCG as well as two schemes of higher order. The subspace dimension
is s= 20. We request at least 15 eigenpairs to be stationary, in other words the quantity
of the error for the i-th eigenpair in the k-th iteration step should satisfy

erri = ||Aυ(k)
i − θ(k)

i Mυ(k)
i ||2 ≤ 10−10, i = 1, ..., 15

The construction of the hierarchy is based on the “classical” coarsening strategy
for all calculations. This method is provided by the algebraic multigrid toolbox
(CTB) by Jane Cullum et. al. The action of the preconditioner B is performed by
executing a single V-cycle. The computed eigenvalues and respective final residuals
for PINVIT, PSD and LOBPCG are given in Table 1. In no case any eigenpair was
missed. Additionally, the number of needed iterations for each algorithm is stated
at the top. The results of higher order schemes are similar to the ones obtained by
LOBPCG, presented in the last column of Table 1.

Figure 2 shows the normalized computational times for the solution phase. The
costs for the setup phase are excluded because they are for all algorithms identically.
We can conclude that LOBPCG appears to be the most efficient algorithm. This
coincides with an observation made in [3]. As consequence of this fact we focus on
LOBPCG for the next computations.

Table 2 shows results for the 15-th eigenvalue obtained by LOBPCG for different
meshes. Moreover, we now utilize both the “classical” coarsening strategy (provided
by CTB) and smoothed aggregation (provided by ML). L denotes

Table 1
Exact and computed eigenvalues

PINVIT, Niter = 65 PSD, Niter = 28 LOBPCG, Niter = 18

λex λk,l |err | λk,l |err | λk,l |err |
7.822386

12.502574
17.953688
24.148219
31.065919
35.078513
38.691135
44.894358
47.011332
55.500948
56.016195
65.697054
66.884838
76.046502
79.033483

7.96429
12.50297
17.95399
24.14876
31.06684
35.53111
38.69259
44.89748
47.01348
55.50382
56.01922
65.70124
66.88902
76.05212
79.03937

8.05E-11
2.93E-11
6.76E-11
9.24E-11
3.89E-11
3.40E-11
5.41E-11
5.34E-11
8.37E-11
4.46E-11
4.63E-11
8.23E-11
7.19E-11
5.40E-11
9.34E-11

7.96429
12.50297
17.95399
24.14876
31.06684
35.53111
38.69259
44.89748
47.01348
55.50382
56.01922
65.70124
66.88902
76.05212
79.03937

1.44E-11
2.36E-11
4.49E-11
2.98E-11
6.45E-11
2.02E-11
3.02E-11
7.93E-11
2.13E-11
4.69E-11
3.52E-11
3.92E-11
4.80E-11
3.22E-11
6.36E-11

7.96429
12.50297
17.95399
24.14876
31.06684
35.53111
38.69259
44.89748
47.01348
55.50382
56.01922
65.70124
66.88902
76.05212
79.03937

1.80E-11
3.26E-11
5.86E-11
1.77E-11
2.93E-11
5.60E-11
7.27E-11
2.25E-11
2.22E-11
5.10E-11
5.28E-11
2.10E-11
1.79E-11
4.45E-11
5.01E-11
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Fig. 2. Ratio of (normalized) computational times

Fig. 3. Localisation of ε

Table 2
Performance characteristics of LOBPCG for two different preconditioners

n CTB ML

L Niter λ15 L Niter λ15

97429 8 17 79.05168 4 49 79.05168
191257 9 17 79.04268 4 60 79.04268
297078 9 17 79.03937 4 66 79.03937
403688 10 17 79.03792 4 70 79.03792
615636 10 17 79.03634 4 74 79.03634
857811 10 17 79.03557 4 83 79.03557
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Fig. 4. Three smallest eigenmodes for the test problem with ε according to equation (5)

the number of levels constructed in the setup phase. A single V-cycle is executed
to compute the preconditioned residuals. For n= 97429 CTB generates L= 8 levels
with, respectively, 97429, 44051, 15465, 5637, 2046, 743, 270 and 96 unknowns. In
contrast, ML construtcs a hierarchy consisting of L= 4 levels with 97429,11863,798
and 45 unknowns. The smoothed aggregation approach leads to a “faster” coarsening
reflected in the smaller number of levels. But this results in less exact precondi-
tioned residuals and in a higher number of itera- tion steps, too. Nevertheless, both
approaches compute the same eigenvalue, cf. Table 2.

3.2. Test problem with varying coefficients

In this section we want to underline the capability of AMG to deal with eigen-
problems with jumps in the coefficients. For such problems it is known that solvers
which make use of geometric multigrid methods loses its potential con- vergence
properties.

For this purpose we consider equation (1) with ε defined by

ε =


1 for ϕ ∈

[
(2m + 1)

π

4
, (2m + 2)

π

4
, t ∈ [0, 1]

103 for ϕ ∈
[
(2m)

π

4
, (2m + 1)

π

4
, t ∈ [0, 1]

(5)

for m= 0,1,2,3. The distribution of ε is depicted in Figure. 3. LOBPCG (with
adapted matrices Aand Mof size n= 297078) is applied to compute the 15-th smallest
eigenpairs. Again, the first variant utilizes CTB as precondi- tioner. We obtain the
three smallest eigenvalues, θ1= 40.91474, θ2= 57.87177 and θ3= 57.96446. The
corresponding eigenmodes are depicted in Figure 4. The inhomogeneity of ε leads
to a strong localization of the gradients of the eigenfunctions within the areas with
small conductivity.

In contrast to the homogenous case considered in Section 3.1 a hierarchy with
L= 10 levels is constructed. Consequently, we observe a modified behavior in the
case of “classical” coarsening. However, for CTB the number of needed iteration
steps increases to Niter= 19. Whereas ML works again on a hierar- chy with L= 4
levels. Due to this the number of iterations increases to 191.

Nevertheless, the same eigenpairs are computed.
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4. Conclusion

A class of gradient based eigensolvers which make use of algebraic multigrid
preconditioning has been presented and tested. We conclude from performance char-
acteristics that LOBPCG is the most efficient method. Furthermore, two variants of
AMG preconditioning which differ in underlying coarsening strate- gies were ap-
plied. The computation of test problems showed that AMG pre- conditioning can be
applied to such problems successfully. In particular, the capability of AMG to deal
with problems with large jumps in the coefficients was confirmed. Consequently,
preconditioning by AMG is a well-working alter- native to the so far predominant
geometric multigrid approach.
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