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Abstract: 
 

In this work, we introduce a method of estimating stochastic freeway capacity using elements of both extreme value theory 
and survival analysis. First, we define capacity data, or estimates of the capacity of the roadway, as the daily maximum 
flow values. Then, under a survival analysis premise, we introduce censoring into our definition. That is, on days when 
flows are sufficiently high and congestion occurs, corresponding flow maxima are considered true estimates of capacity; 
otherwise, for those days that do not observe high flows or congestion, flow maxima are deemed censored observations 
and capacities must be higher than the observations. By extreme value theory, the collection of flow maxima (block 
maxima) can be appropriately approximated with a generalized extreme value (GEV) distribution. Because of small sample 
sizes and the presence of censoring, a Bayesian framework is pursued for model fitting and parameter estimation. To lend 
credence to our proposed methodology, the procedure is applied to real-world traffic stream data collected by the New 
Hampshire Department of Transportation (NHDOT) at a busy location on Interstate I-93 near Salem, New Hampshire. 
Data were collected over a period of 11 months and raw data were aggregated into 15-minute intervals. To assess our 
procedure, and to provide proof of concept, several validation procedures are presented. First, using distinct training and 
validation subsets of our data, the procedure yields accurate predictions of highway capacity. Next, our procedure is 
applied to a training set to yield random capacities which are then used to predict breakdown in the validation set. The 
frequency of these predicted breakdowns is found to be statistically similar to observed breakdowns observed in our 
validation set. Lastly, after comparing our methodology to other methods of stochastic capacity estimation, we find our 
procedure to be highly successful. 
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1. Introduction 
When studying traffic flow and volume, a prominent 
concept is that of roadway ‘capacity’ (Hyde and 
Wright, 1986). The Highway Capacity Manual 
(HCM) defines capacity as ‘the maximum hourly 
rate at which persons or vehicles can be reasonably 
expected to traverse a point or a uniform section of 
a lane or roadway during a given time period, under 
prevailing roadway, traffic and control conditions’ 
(Highway Capacity Manual, 2010). As this defini-
tion includes the term ‘expected,’ the capacity of a 
freeway facility is likely not a constant value.  
It has been shown that capacity varies widely on a 
daily basis for the same facility and under the same 
geometric and traffic conditions (Lorenz and Eleft-
eriadou, 2001; Elefteriadou et al., 1995; Persaud et 
al., 1998; Persaud et al., 2001; Brilon et al., 2005; 
Cassidy and Bertini, 1999; Kuhne et al., 2006; Li 
and Laurence, 2015). Moreover, breakdown does 
not necessarily occur at the same demand levels, but 
can occur when flows are lower or higher than the 
numerical value traditionally accepted as capacity 
(Elefteriadou et al., 1995; Li and Laurence, 2015). 
Thus, a single value of the capacity value for a free-
way facility does not reflect real-world observations 
and capacity should be considered a random variable 
that is stochastic in nature (Brilon et al., 2005; Bri-
lon and Geistefeldt, 2009; Geistefeldt, 2008; Dong 
et al., 2017). By considering capacity in this way one 
is left to identify/estimate capacity as a probability 
distribution across a range of values (Brilon et al., 
2005; Lorenz and Elefteriadou, 2001). The corre-
sponding cumulative distribution of capacity values 
has become known as the ‘capacity distribution 
function,’ ܨ஼ (Brilon et al., 2005), and is considered 
a valuable tool for evaluating roadway performance 
and efficiency.  
In this analysis, we pursue the use of daily flow max-
ima as estimates of capacity. After outlining a theo-

retical justification for using such values, the gener-
alized extreme value (GEV) distribution will be used 
for their approximation. Based on data collected 
from a location along Interstate 93 in New Hamp-
shire, we will use the GEV model form to define a 
capacity distribution function, a measure of stochas-
tic capacity, for the freeway segment. In addition to 
extreme value theory, this work will apply aspects 
of lifetime analysis (censoring) and computational 
Bayesian model-fitting based on Markov Chain 
Monte Carlo (MCMC) methods. This analysis, as it 
is presented herein, is a refinement of our previous 
work presented in Laflamme (2013). This work 
makes several improvements to that analysis, ex-
tends the work analysis to include a comparison to 
several other methods of capacity estimation, and 
generally presents a more concise approach to esti-
mating capacity.  
 
2. Methods 
2.1. Data and preprocessing 
To calibrate our models, we use real-world traffic 
stream data collected by the New Hampshire (NH) 
Department of Transportation at a single collection 
site in Salem, NH, along the northbound lane of I-93 
just north of an off-ramp, exit 1, and just south of an 
on-ramp. Immediately north of this location (down-
stream), I-93 is physically constricted from three to 
two lanes (See Figure 1). As stated by Brilon et al. 
(2005), such sites (locations immediately upstream 
of a bottleneck) are ideal for the collection of capac-
ity data.  
Initially, it was suspected that the downstream on-
ramp (See Figure 1) was the source of bottleneck, 
but data collected near (just upstream) the on-ramp 
(just downstream from our location) did not support 
this as very few incidents of congestion were ob-
served there (around 30 breakdowns over 244 days). 

 

 
Fig. 1. Illustration of collection site structure along northbound lanes of I-93 in Salem, NH 
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However, our analysis of the traffic stream data 
across the highway segment supports a bottleneck 
located at the lane drop (at the lane drop, at the indi-
cated collection site in Figure 1). In addition to this 
physical bottleneck, traffic volumes at this site ex-
ceed 100,000 vehicles per day (VPD) which far sur-
pass the 60,000 to 70,000 VPD that the roadway was 
designed to accommodate 
(http://www.fhwa.dot.gov/construction/acceler-
ated/wsnh0602.cfm). This heavy, daily flow at the 
site, in conjunction with frequent lane-changing, 
merging, weaving, etc. to accommodate the off-
ramp, results in daily, recurrent congestion. Lastly, 
it is the opinion of the NH DOT that our collection 
site, because of the poor geometry and high vol-
umes, is the bottleneck and source of congestion.  
Data were collected between April 1 and November 
30, 2010. During this time, side-fire radar devices 
intermittently measure traffic at irregular but fre-
quent time periods about 1 minute apart. Data obser-
vations (raw data) consist of the following measure-
ments: vehicle counts, average speed, occupancy, 
and speed (spot speed) of individual vehicles ob-
served over the interval. 69% of days during the col-
lection period experienced breakdown (breakdown 
criteria described in detail in the following section) 
for a total of 228 observed breakdowns (some days 
observed multiple, distinct breakdowns). Also, dur-
ing the collection period, there were several inci-
dents of missing values due to scheduled mainte-
nance (scheduled shut-downs of the device) as well 
as unscheduled ‘gaps’ where the radar devices 
stopped collecting data (some lasted for several 
days).  

Next, because radar data are collected over very 
short, irregular time intervals, these measurements 
were aggregated into uniform intervals of 15 
minutes. The choice of interval length depends on 
the aim of the study, and estimates based on these 
intervals can vary substantially depending on the 
length used. For control studies, analyzing ramp me-
tering systems, for example, very short intervals, 
sometimes as short as 30 seconds or 1 minute, are 
required. These short intervals have the ability to 
capture ‘instantaneous’ traffic behavior, but these 
are not sustained trends. Capacity studies, on the 
other hand, tend to use longer intervals, between 5 
and 15 minutes, generally, so as to capture the un-
derlying trend in flow and reduce (filter) noise. That 
is, 15-minute intervals are recommended to ensure 
‘stable’ flow rates (Smith and Ulmer, 2003; High-
way Capacity Manual, 2010) that are especially suit-
able for macroscopic/speed-flow analyses (HCM, 
2010). As this work aims to identify the capacity of 
the roadway, the maximum sustainable rate, the 
longer 15-minute interval was used.  
Finally, harmonic averages (see Daganzo 1997, for 
example) were calculated from flow and spot speed 
observations within each 15-minute interval to pro-
duce an aggregated flow rate (ݍ) and aggregated 
speed (ݑ) in units of vehicles/hour/lane (vph) and 
miles per hour (mph), respectively. Thus, for each 
day, aggregation yields ݑ௧ and ݍ௧ (speed and flow, 
respectively) series where ݐ represents time-of-day 
with ݐ = 1, … ,96. Figure 2 illustrates the speed and 
flow aggregates produced for one week in April. 
Also, this figure illustrates the stochastic nature of 
congestion, how high flows typically, but do not 
necessarily, result in sustained slow speeds.  

 

 
Fig. 2. Speed (blue) and flow (black) 15-minute aggregates for one week (April 1, 2010 – April 7, 2010). Red 

dots indicate speeds less than 50 mph. Notice that slower speeds correspond to sustained, high traffic 
flows on the first, fifth, and seventh days. Also, notice that sustained slow speeds do not occur on the 
third and fourth days, Saturday and Sunday  
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2.2. Capacity of the roadway 
Researchers have come to acknowledge capacity as 
a stochastic process, and thus, instead of identifying 
capacity as a single, fixed value, have defined capac-
ity as an entire probability distribution (for example, 
Elefteriadou et al., 1995). Such distributions are typ-
ically functions of traffic flow (Elefteriadou et al., 
1995; Brilon et al., 2005), which means that every 
value across a continuous interval of traffic flows 
has a corresponding probability of breakdown (a 
congestion event resulting from traffic flow exceed-
ing the capacity of the roadway). In order to calibrate 
such distributions of capacity, one must first define 
‘capacity data,’ or estimates of the capacity of the 
roadway, then find an appropriate distribution, a ca-
pacity distribution denoted ܨ஼(ܿ), to summarize 
these capacity data.  
 
2.2.1. Breakdown/congestion identification 
Because ‘capacity data’ is often dependent on iden-
tification of a ‘breakdown’ or ‘congestion event,’ 
we must precisely define these concepts. So, how do 
we define breakdown or congestion? In several stud-
ies, a fixed speed threshold, denoted ݑ∗, is chosen to 
distinguished between freely flowing and congested 
states (Banks, 2009; Brilon et al., 2005; Geistefeldt 
and Brilon, 2009; Habbib-Mattar et al., 2009; Lo-
renz and Elefteriadou, 2001; Yeon et al., 2009, Li 
and Laurence, 2015). Using this definition and de-
noting ݑ௧ as the speed for a specified time ݐ, when 
௧ݑ > ௧ାଵݑ and ∗ݑ <  a breakdown is identified at ,∗ݑ
time ݐ (See, for example, Lorenz and Elefteriadou, 
2001). If, on the other hand, ݑ௧ > ௧ାଵݑ and ∗ݑ >  ,∗ݑ
no breakdown occurs at time ݐ.  
In our case, because the timing of the breakdown is 
not critical to our procedure (see below), we employ 
the procedure to identify if a particular day observes 
a breakdown. Specifically, a daily breakdown is 
identified whenever any of the 96 (15-minute) speed 
aggregates drop below a predetermined speed 
threshold, ݑ∗. For threshold-based breakdown iden-
tification, no standard approach exists for identify-
ing ݑ∗, but based on visual inspection of our speed 
aggregates, a value of ݑ∗ = 50 mph was chosen. 
This value is similar to thresholds used by Brilon et 
al. (2005), Geistefeldt and Brilon (2009), Lorenz and 
Elefteriadou (2001), Yeon et al. (2009), who used 
fixed values of 47 mph, 50 mph, 43 mph, and 56 
mph, respectively. In a related study, using the same 
I-93 raw data, Laflamme and Ossenbruggen (2017) 

used the same definition of breakdown in their study 
of time-of-day and day-of-the-week on congestion 
duration and occurrence. 

 
Note: since our choice of ݑ∗ is chosen with some 
degree of arbitrariness, we investigated the effect of 
using a different threshold of ݑ∗ = 45 mph, a value 
closer to the smaller thresholds used in similar stud-
ies (we feel larger thresholds, speeds bigger than 50 
mph, are approaching freeflow speeds and cannot 
justifiably be used to identify congested traffic). Af-
ter performing the analysis presented in the follow-
ing sections for both ݑ∗ = 45 and ݑ∗ = 50, we found 
no evidence to suggest the resulting distribution of 
capacity was significantly affected by our choice of 
threshold. Thus, going forward, we use ݑ∗ = 50 as 
originally defined and assume the procedure is not 
particularly sensitive to thresholds within a realistic 
range.  
An advantage of using speed aggregates to identify 
breakdown is that, because aggregates correspond to 
averages based on multiple vehicles, drops below ݑ∗ 
likely correspond to sustained drops in speed and 
‘true’ breakdowns. For the remainder of this work, 
‘breakdown’ or ‘congestion’ (used synonymously) 
refers to a transition from sustained speeds above ݑ∗ 
to sustained speeds below ݑ∗. While we are confi-
dent that our definition captures true episodes of 
congestion, it is worth noting that no universal defi-
nition of congestion exists. As stated by Zochowska 
(2014), congestion should be treated as a relative 
phenomenon where expectations of the road system 
play a role in the perception of congestion. 
 
2.2.2. Daily flow maxima as ‘capacity data’ 
Based on the current literature related to stochastic 
capacity, while no one, universally-accepted meas-
ure of capacity has been established, ‘breakdown 
flows,’ those flows measured immediately before 
the onset of congestion, have been widely adopted 
as capacity data, or good estimates of capacity 
(Elefteriadou and Lertworawanich, 2002; Brilon et 
al., 2005; Lorenz and Elefteriadou, 2001; Minder-
houd et al., 1997). Using our definition and notation 
above, when breakdown occurs at time ݐ, or when 
௧ݑ > ௧ାଵݑ and ∗ݑ < -௧, the flow measured imݍ ,∗ݑ
mediately before breakdown, is identified as the 
breakdown flow.  
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One concern when using such breakdown flows to 
measure capacity, however, is that higher flows of-
ten precede the breakdown flows. Often, prior to a 
freeway section entering a congested state (breaking 
down), traffic flow increases, peaks, and then begins 
to drop (Banks, 2009). In such cases, traffic flow is 
higher before the breakdown flow, and breakdown 
flow likely underestimates capacity. In this work, ra-
ther than using breakdown flows as estimates of ca-
pacity, we instead propose the use of daily flow 
maxima, the collection of maximum daily flows ob-
served from the traffic stream data. Daily flow max-
ima, for these particular cases, would capture the 
higher flows prior to breakdown and ultimately ob-
tain more representative measures of capacity, the 
maximum flow that a roadway can sustain. In our 
case, on days when breakdowns occur, the daily 
flow maximum is, on average, 484 vph greater than 
the corresponding breakdown flow. This is suggests 
that, generally, flow maxima are capturing the 
higher flows prior to breakdown as illustrated in Fig-
ure 3.  
Another concern when using breakdown flows is 
that they are highly dependent on subjective, and of-
ten arbitrary, breakdown identification criteria. For 
example, breakdowns are typically defined by sus-
tained speeds below a fixed speed threshold (50 
mph, say). While it is simple to extract a breakdown 
flow when a breakdown occurs, changing the speed 
threshold can change the exact moment of break-
down and ultimately change the corresponding 
breakdown flow. Daily flow maxima, on the other 

hand, have the advantage of being independent of 
the methods used to identify breakdowns. 
The use of daily flow maxima as estimates of capac-
ity is indirectly supported in literature. That is, Hall 
and Agyemang-Duah (1991) and Hall et al. (1992) 
use maximum pre-breakdown flow, or the maxi-
mum sustained flow measured in some predeter-
mined time window prior to a breakdown, to esti-
mate capacity. Because daily flow maxima them-
selves typically occur prior to breakdowns (in fact, 
more than 80% of flow maxima occur within an hour 
of congestion) , these measures closely resemble 
maximum pre-breakdown flows, although the two 
are conceptually different (See Figure 3 for an illus-
tration of breakdown flows, maximum pre-break-
down flows, and daily flow maxima). Minderhoud 
et al. (1997) discuss the use of ‘extreme’ values and 
state that observed maximum volumes (collected 
over days, for example) and corresponding extreme 
value statistics can be used to estimate capacity dis-
tributions. Next, applicable to our study, is the work 
of Hyde and Wright (1986) who use a variety of flow 
maxima to calibrate a capacity distributions based 
on direct probability methods and asymptotic the-
ory. Lastly, among other methods to identify capac-
ity distributions, Li and Laurence (2015) fit a variety 
of distributions (Normal, lognormal, Weibull, uni-
form) to the largest daily, five-minute flow rates 
(maxima) to data collected from San Diego (Califor-
nia) and Shanghai roadways. In this work, the au-
thors identified little variation (standard deviation of 
veh/h/ln) in maxima-based capacity estimates over 
time (Li and Laurence, 2015).  

 

 
Fig. 3. Illustration of breakdown flow, maximum pre-breakdown flow, and daily flow maxima. Here, break-

down occurs at time point ݐ = 69 (grey line). Note that on this day, the maximum pre-breakdown flow 
and daily flow maxima are identical values (3,008 vph). Also, note that the breakdown flow (1,704 
vph) is surely an underestimate of the capacity of the roadway 
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2.2.3. Censoring 
One issue that arises when considering daily flow 
maxima as capacity data is that high traffic flows are 
not observed on every day. Even our section of I-93, 
which typically observes high demand on a daily ba-
sis, occasionally experiences lower-than-usual traf-
fic flows without congestion. Intuitively, daily flow 
maxima extracted from these few days would not be 
representative of roadway capacity. As stated by the 
HCM, the capacity for a given facility is the flow 
rate that can be achieved repeatedly for peak periods 
of sufficient demand (HCM, 2010). To remedy this 
situation, we introduce censoring into our definition 
of capacity data. For days when breakdown occurs 
(as defined, when speed aggregates drop below ݑ∗), 
the demand is considered ‘sufficiently’ high, and the 
associated daily maximum flow is considered a 
‘true’ estimate of capacity. However, on days where 
demand is insufficient, when breakdowns are not ob-
served (when speed aggregates never drop below 
 daily conditions are not adequate (sufficiently ,(∗ݑ
extreme) to assess the true capacity of the roadway. 
In these cases, under a survival analysis premise, the 
corresponding maxima are deemed censored (right-
censored) capacity values as the roadway can surely 
service higher demands. That is, breakdowns would 
occur at some higher flow rates, and the resulting ca-
pacity, the maximum daily flows, would necessarily 
be larger than the observed value.  
Despite the incompleteness associated with cen-
sored values, they still contain valuable information 
and will therefore be considered in the calibration of 
our capacity distribution (Geistefeldt, 2010). Non-
parametrically, the capacity distribution function, 
 ஼(ܿ), has been estimated using the Kaplan-Meierܨ
(Kaplan and Meier, 1958)/product limit method 
(PLM) based on samples that include both censored 
and uncensored values, a survival analysis approach 
(Brilon et al., 2005). It has been shown that, under 
this survival analysis framework, the Weibull model 
is well-suited and accurately approximates capacity 
data based on breakdown flows (Brilon and Zurlin-
den, 2003; Brilon et al., 2005). In a comparison of 
capacity distributions approaches, Geistefeldt and 
Brilon (2009) found that using censored data 
achieves significantly more precise estimates, espe-
cially at higher quantiles.  
 
 
 

2.2.4. Notation 
Let the random variable ܥ denote the capacity of the 
roadway. Furthermore, let ܯ௝ =
max (ݍ௝,௧ୀଵ,ݍ௝,௧ୀଶ, … , -௝,௧ୀଽ଺) be the daily maxiݍ
mum flow for some day ݆ in the collection period 
where ݆ = 1, … ,224. If ݑ௝,௧ <  or ,ݐ for some time ∗ݑ
if a breakdown occurs at some time ݐ on day ݆ and 
flows are deemed sufficient to estimate capacity, 
then ܯ௝ is considered a capacity datum and ܯ௝ = ௃ܿ. 
Otherwise, if ݑ௝,௧ ≥  or if a breakdown ,ݐ for all ∗ݑ
does not occur on day ݆ and flows are deemed insuf-
ficient to estimate capacity, then ܯ௝ is considered a 
censored value. In these cases, ܯ௝is less than the ca-
pacity of the roadway, or ܯ௝ < ௃ܿ. 
 
2.3. Generalized extreme value distribution for 

maxima 
By extreme value theory, the collection of maxima 
observed over fixed time units, or blocks, can be ap-
proximated by a superclass of distributions called 
the Generalized Extreme Value distribution, or the 
GEV. The GEV is given by the following form: 
 

(ݔ)ܩ = ݌ݔ݁ ൜− ቂ1 + ߦ ቀ௫ିఓ
ఙ

ቁቃ
ିଵ/క

ൠ, (1) 
 

defined on {1 :ݔ + క(௫ିఓ)
ఙ

> 0} with ߤ and ߪ the re-
spective location and scale parameters. The shape 
parameter of the GEV, ߦ, characterizes the rate of 
tail decay, where ߦ > ߦ ,0 = 0, and ߦ < 0 corre-
spond to data with heavy tails, light tails, and short 
tails, respectively. For details related to extreme 
value theory, the reader is directed to Coles (2001), 
for example.  
In the typical application of extreme value theory to 
environmental data, data are measured very sparsely 
(daily rainfall, for example) and blocks are set to 
long periods (a year, say) to limit bias in estimation. 
In our case, however, because we have densely 
measured data, blocks are defined as days. The re-
sulting ‘block maxima’ are the daily flow maxima 
extracted from the traffic stream data, which we con-
sider capacity data. Thus, in (1), we replace the ran-
dom variable ܺ with capacity data ܥ, both censored 
and uncensored (observed) daily flow maxima, and 
 .(ܿ)஼ܨ becomes a capacity distribution (ݔ)ܩ
Although the GEV model assumes that block max-
ima are extracted from a series of independent ob-
servations, the GEV is still a reasonable distribution 
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form for block maxima extracted from dependent se-
ries such as we have (Coles, 2001). Additionally, the 
GEV approach assumes the collection of daily max-
ima are identically distributed, which, from observ-
ing the 8 months of data, appears to be the case. That 
is, we observe no true seasonality (‘heavy’ season), 
no trend, no oscillations, nor any systematic patterns 
in maxima.  
 
2.4. Computational Bayesian approach 
Daily maxima (capacity data) have two dominant 
characteristics: small sample sizes and censored val-
ues. Because of this, and because capacity model-
fitting need not be done in real-time, a computa-
tional Bayesian approach was employed. Ozguven 
and Ozbay (2008) concluded that Bayesian estima-
tion is superior for survival analyses with small sam-
ples and censoring. The OpenBUGS statistically 
software (Lunn et al., 2000) was used for all compu-
tation Bayesian estimation, and the analysis and ma-
nipulation of all OpenBUGS output, the data con-
taining the Bayesian samples of the parameters, was 
then performed with the R statistical software (R 
Core Team, 2015). For a more detailed treatment of 
computational Bayesian procedures, the reader is di-
rected to any number of sources including Carlin and 
Louis (2008) and Gelman et al. (2003).  
Under the Bayesian framework, identifying the ca-
pacity distribution function (ܨ஼(ܿ)) is simply identi-
fying the cumulative distribution that most accu-
rately estimates the capacity data. By assuming a 
model form for this distribution function, the GEV, 
the objective of the analysis is then simply the esti-
mation of the model parameters.  
 
3. Results 
Using asymptotic distributions, Hyde and Wright 
(1986) found flow maxima are approximated most 
accurately by short-tailed distributions. This makes 
intuitive sense as there is an absolute limit to the 
number of vehicles a road may carry. Thus, finite 
upper bounds were assumed for the capacity data, 
and, consequently, GEV shape parameters were as-
sumed to be negative. Somewhat diffuse (semi-in-
formative) prior distributions for the GEV scale and 
location parameters were assumed, but within a re-
alistic range based on previous model-fitting.  
Capacities, ܥ, are assumed to be generalized extreme 
value distributions (GEV), ߤ)ܸܧܩ~ܥ, ,ߪ -with lo ,(ߦ

cation, scale, and shape parameters ߤ, -re ,ߦ and ,ߪ
spectively. Collected data, ܯ௝ , are maximum daily 
traffic flows for day ݆ = 1, … , 244, each of which is 
classified as a capacity datum or censored capacity. 
For the GEV shape (ߦ), scale (ߪ), and location (ߤ) 
parameters, semi-informative, uniform prior distri-
butions on (-.75, 0), (0, 10), and (2000, 5000), re-
spectively, are used. 
The following results, the posterior analysis, are 
based on the output of 5,000 MCMC iterations, the 
first 2,000 discarded as a ‘burn-in’ period. Conver-
gence and independence from the starting values 
were checked using the ‘coda’ package in R (Plum-
mer et al., 2006), the standard tools in such cases. 
Figure 4 gives fitted distributions (densities and 
CDFs) for several hundred sets of parameter esti-
mates, and we have included the median fitted dis-
tribution as well as upper and lower 5% fitted distri-
butions. For comparison purposes only, to illustrate 
the effect of including censored values in our model, 
we have also included GEV distributions fitted to 
only uncensored values.  
 

 
Fig. 4. Comparison of fitted cumulative distributions 

(right) with and without censored values. 
Grey lines represent individual fitted curves 
considering censored values; black lines rep-
resent median, upper 5%, and lower 5% 
curves. Red line represents fitted model to 
only uncensored values. 
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From Figure 4, we observe the effect of the inclusion 
of censored values on the fitted distribution, the ca-
pacity distribution function, ܨ஼. Compared to the 
distribution fitted to uncensored values only (red 
curve), inclusion of censored values in model-fitting 
results in a right shift of the distribution (grey and 
black curves). To objectively assess this shift, and to 
compare a GEV model using uncensored values to 
the Bayesian-based GEV using both censored and 
uncensored values, we performed a two-sample Kol-
mogorov–Smirnov Test (KS Test). Briefly, the two-
sample KS test is a non-parametric test used to de-
termine if two probability distributions differ. Spe-
cifically, for a sample of size ݊ with CDF (ݔ)ܨ and 
a second sample of size ݉ with CDF (ݔ)ܩ, the KS 
test tests ܨ = ܨ against (null hypothesis) ܩ ≠ -al) ܩ
ternative hypothesis). If ܨ௡(ݔ) and ܩ௠(ݔ) are the 
corresponding empirical CDFs of the samples, then 
the null hypothesis is rejected if the statistic ܦ =
sup

௫
| (ݔ)௡ܨ −  is larger than some associated |(ݔ)௠ܩ

threshold. In our case, the KS test of the two capacity 
distribution functions gave ample evidence to reject 
the claim that the two distributions are statistically 
similar (0.2323 = ܦ; p-value = 0.0094; sample sizes 
݊, ݉ = 99) and underscores the important effect of 
censoring.  
 
3.1. Validation 
In order to assess our methodology, a variety of val-
idation procedures were implemented. First,  

a validation procedure was used to evaluate the plau-
sibility of our GEV model choice in predicting the 
distribution of capacity data not used in the fitting 
process, to assess the model’s probabilistic predic-
tive ability. The cross-validation (CV) technique 
used here is a random sub-sampling procedure 
where the data is tested against itself. Under the 
premise of exchangeability, a training set is first cre-
ated by randomly selecting 70% of both the censored 
and uncensored values. Of the remaining 30% of the 
data, only the uncensored capacity values were des-
ignated as a validation set. Since the training and 
validation sets are non-overlapping, the validation 
set may be considered truly unobserved data suitable 
for evaluating the procedure.  
Using the Bayesian approach described previously, 
a GEV model is fit to the training set and then com-
pared to the validation set. This process is repeated 
numerous times to ensure consistency, and result 
from one replication is presented in Figure 5. From 
this result, the histogram represent the distribution 
of capacity values in the validation set, those capac-
ity values not used in model fitting (the 30% with-
held from model fitting). The grey and black lines 
represent the GEV distribution (density) fitted via 
Bayesian methods to the training data. We observe 
the fitted GEV model visually captures the shape of 
the validation data, and therefore appears to success-
fully predict the distribution of capacity data.  

 

 
Fig. 5. Histogram of validation data, overlaid densities fitted to training data (grey lines), median training 

density (thick black line), and upper/lower 5% density curves (thin black lines) 
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Next, quantiles of the GEV distribution fitted to the 
training set were compared to the observed quantiles 
of the validation set via a quantile-quantile plot (see 
Figure 6). Results show excellent correspondence, 
and we have visual confirmation that the GEV 
model class is a successful predictor of capacity 
data, even at the upper tail (extreme values). Also, 
as above, this supports the use of censored values in 
model-fitting as their inclusion yields accurate prob-
abilistic predictions. Lastly, a two-sample KS test 
was used to compare the distribution of the valida-
tion data to the fitted distribution from the training 
data. The KS test provided no evidence to reject the 
claim that the two distributions are statistically sim-
ilar (0.099822 = ܦ; p-value = 0.8906; sample sizes 
݊ = 99, ݉ = 51).  
We further validate our procedure by assessing the 
ability of daily flow maxima to approximate freeway 
capacity and predict breakdown. To do this, a vali-
dation procedure was performed in which observed 
traffic flows were compared to predicted capacity 
values. To do this, 70% of days in the collection pe-
riod were randomly designated as a training set, and 
the remaining 30% of days in the collection period 
were designated as a validation set. Then, our 
model-fitting procedure was performed on the train-
ing data: daily maxima were extracted, maxima were 
identified as either capacity or censored values, and 
a GEV model was fitted using a computational 

Bayesian procedure. From the fitted results, the 
mean parameter estimates, random capacities were 
generated. Flows from the validation set were then 
compared to the randomly generated capacity val-
ues. Figure 7 shows three days of validation data 
(flow values withheld from model-fitting) and the 
corresponding capacity estimates. In this particular 
case, since observed flows exceed random capaci-
ties, breakdowns are predicted on two of the three 
days. 
Since we intend this procedure to be used for proba-
bilistic prediction, we observe how well the proce-
dure is able to predict the number of days when 
breakdown occurs. To do this, we simply observe 
the number of days (in the validation set) when 
breakdown is predicted, and then compare this to the 
number of days when breakdown actually occurs, 
when sustained speeds below 50 mph were observed 
(which we can determine based on speed records for 
these days). Zurlinden (2003), Brilon et al. (2007), 
and Geistefeldt and Brilon (2009) performed similar 
procedures to test the consistency of their capacity 
distributions. In the end, our procedure predicted 
that 44 of the 67 days in the validation set would ob-
serve breakdown, a rate of about 66%. We know, 
however, based on the known speeds for the days in 
the validation set, that 47 of the 67 days in the vali-
dation set (or 70%) observed true breakdowns. 

 

 
Fig. 6. Quantile-quantile plot comparing quantiles of the GEV model fit to the training set (x-axis) and quan-

tiles of the observed capacities observed in the validation set (y-axis). 
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Fig. 7. Flow values (black) for a sample of three days from our validation set (data withheld from model-

fitting) and randomly generated capacity values (red) from our training set. Red dots indicate occur-
rences when observed flow exceeds the capacity of the roadway, breakdown. Note that two of three 
days observe breakdown  

 
To objectively compare these rates (66% versus 
70%), we performed a uniformly most powerful 
(UMP) unbiased test, the two-sample rate ratio test. 
Specifically, the test assumes the rates are equal, or 
that the ratio of these rates is equal to 1. If the rate 
ratio is very different from 1, then the assumption is 
rejected and we conclude the rates are different. In 
our case, the ratio of estimated rates is found to be 
0.9361 (the 95% confidence interval for the rate ra-
tio (0.6062, 1.4432)), which is not significantly dif-
ferent from 1 (estimated ratio compared to a bino-
mial distribution; p-value = 0.8341). Thus, we have 
no evidence to reject the claim that the rates of pre-
dicted and observed breakdowns are different. This 
agreement between predicted and observed propor-
tion of breakdowns supports the use of daily flow 
maxima as an estimate of capacity, provides evi-
dence that our model is a suitable probabilistic pre-
dictor of breakdown, and generally gives credence 
to our procedure. 
 
3.2. Comparison to other methods of estimating 

capacity 
Since we propose that our procedure for estimating 
capacity is advantageous over current methods of es-
timating capacity, a validation procedure is imple-
mented in which our method is compared to other, 
common methods of capacity estimation. Specifi-
cally, we compare our method to the approaches dis-
cussed in Brilon et al. (2005), the non-parametric 
product limit method (PLM) approach (Kaplan and 
Meier, 1958) and the survival analysis approach us-
ing a Weibull distribution (Brilon et al., 2005), as 

well as survival-based approaches using both Gauss-
ian (Normal) and logistic distributions. These same 
methods of capacity estimation were discussed in 
Kim et al. (2010), who investigated the effect of 
weather on capacity.  
Similar to our validation of our procedure using 
maximum flow to estimate capacity, we now test the 
PLM, Weibull, Gaussian, and logistic models. As 
above, 70% of the days in the collection period were 
randomly designated as a training set, and the re-
maining 30% were designated at a validation set. 
Then, from the training set, censored and uncen-
sored values were identified and each of the four 
models was used to estimate distributions of capac-
ity. Finally, these fitted distributions were compared 
to the capacity values identified in the validation set 
(the values not used in the fitting process). Figure 8 
shows the CDFs of the four methods (the resulting 
capacity functions) as well as the empirical CDF of 
the observed capacities in the validation set. While 
the brown line, corresponding to the capacity func-
tion based on a logistic model, is closest to the dis-
tribution of validation capacities (based on a two-
sample KS test with 0.28758 = ܦ; p-value = 
0.007639; sample sizes ݊ = 99, ݉ = 51) none of the 
distributions are deemed statistically similar to the 
observed capacities (based on KS tests). We remind 
the reader that in the validation procedure for our 
modeling approach (see Validation), we found the 
resulting capacity function was statistically similar 
to distribution of observed capacities (based on KS 
test).  
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Note: it is not possible to put our previous result 
(GEV procedure) and this validation result in the 
same figure as our procedure and the results below 
are based on different estimates of capacity (our pro-
cedure uses maxima and below we use breakdown 
flow). However, a direct comparison of our proce-
dure to these approaches will be discussed later.  
As a last validation procedure, our method of esti-
mating capacity (GEV, maximum flow) is compared 
to the four methods above (PLM, Weibull, Gaussian, 
and logistic models) in terms of actually predicting 
breakdowns. As previously done for our procedure 
(see above), we use the fitted distributions (fit to the 
training datasets) to generate random distributions of 
capacities. Flows from the validation set (observed 
flows) are then compared to the randomly generated 
capacity values for the four different models. Then, 
we simply observe the number of days (in the vali-
dation set) when breakdown is predicted, and then 
compare this to the number of days when breakdown 
actually occurs, when sustained speeds below 50 
mph were observed (which we can determine based 
on speed records for these days). As done previ-
ously, we compare the number of predicted days ex-
periencing traffic breakdown to the observed num-
ber of day experiencing breakdown using a rate ratio 
test. Recall that 47 of the 67 days in the validation 
period observed sustained breakdowns. Based on the 
comparison of observed flows and random capaci-
ties generated from the fitted PLM, Weibull, Gauss-
ian, and logistic models, we have predicted break-
downs in 57, 41, 38, and 40 days, respectively. 
These values agree with the CDF plot (Figure 8) as 
the Gaussian curve, among those four distributions, 
has the highest proportion of large capacity values 
and we would thus expect this distribution to yield 
the lowest number of breakdowns. Based on the p-
values associated with the rate ratio tests, we find 
that none of the predicted rates are statistically dif-
ferent from the observed rate (47 of 67 days). That 
said, the predicted number of days with breakdown 
from our procedure, 44 (see last paragraph in section 
3.1 above), is the closest to the observed number of 
days with breakdown.  
While the four models and our procedure all do well 
to predict the number of days with breakdowns, our 
procedure is especially accurate in terms of total 
number of breakdown predicted in the validation pe-
riod. During the validation period, as mentioned 

above, there were 47 of the 67 days that observe traf-
fic breakdown. But, during some of these 47 days, 
multiple, distinct breakdowns were observed (when 
breakdown occurs, then has a sustained period of 
freely flowing traffic before another breakdown). In 
fact, we observe 65 distinct breakdowns in this vali-
dation period. Using our GEV procedure and maxi-
mum flows, after fitting a distribution to the training 
data, generating random capacities, and comparing 
these random capacities to observed flows from the 
validation period, we find 74 predicted breakdowns 
(compared to the 65 true breakdowns). To statisti-
cally test if these counts are different, we use a Chi-
square test that assumes the counts come from a 
common Poisson distribution (this is equivalent to a 
Z-test of the difference of two Poisson rates). The 
corresponding test statistic is the accumulation of 
squared differences between observed and expected 
counts under the assumption of a common Poisson 
rate parameter. This statistic, Xଶ, follows a Chi-
square distribution with one degree of freedom (d.f. 
= 1). In our case, comparing 65 observed break-
downs to our predicted 74 breakdowns, we find no 
evidence to reject the assumption that these are real-
izations from a common distribution (Xଶ = 0.583, 
degrees of freedom (d.f.) = 1, p-value = 0.4452). 
Similar tests of the other four models (PLM, 
Weibull, Normal, and logistic models) found that 
only the PLM predicted a statistically dissimilar 
number of breakdowns (125) than the observed 
count (Xଶ = 18.947, d.f. = 1, p-value = 0.00001). It 
is worth noting, however, that our procedure based 
on maximum flows gave a predicted value closest to 
the observed number of breakdowns. 
For comparison purposes, a purely deterministic 
measure of capacity was tested using the same pro-
cedure. Using a fixed capacity value of 2,656 vph, 
the mean of breakdown flows in the training period, 
and using the procedure outlined above, we have 
predicted breakdowns on only 27 of the 67 days. Us-
ing a rate ratio test, this is ratio is found to be statis-
tically dissimilar (estimated ratio of 0.5744, p-value 
= 0.0265) to the observed rate of 47 out of 67. Fur-
thermore, a deterministic capacity measure predicts 
a total of 50 breakdowns during the validation pe-
riod, a count found to be nearly statistically dissimi-
lar (Xଶ = 1.9565, d.f. = 1, p-value = 0.1619) to the 
observed number of breakdowns (65). 
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Fig. 8. Capacity distribution functions based PLM, Weibull, Gaussian, and logistic models (red, green, blue, 

and brown curves, respectively). These models were fit to training data (both capacity and censored 
values) and compared to the distribution of capacity values observed in the validation set (black dots) 

 
Note: for all of the validation procedures, we focus 
on probabilistic predictions and, as such, focus on 
predicting distributions and frequency of predicted 
breakdowns. We cannot reasonable expect any of 
these procedures (either our procedure based on 
maximum flows or other procedures using break-
down flows) to predict the exact timing of a break-
down.  
 
4. Discussion and Conclusion 
In this work, a number of techniques were examined 
to offer a new perspective on the estimation of sto-
chastic capacity. First, we have made a case for con-
sidering daily flow maxima as estimates of roadway 
capacity. When daily maxima correspond to break-
downs, daily maximal flows are considered capacity 
data; otherwise, these maxima are considered cen-
sored (right-censored) estimates. Extreme value the-
ory suggests such estimates of capacity, maximum 
flows, may then be suitably approximated by the 
generalized extreme value (GEV) distribution for 
block maxima. To introduce the censored values, 
and to address small sample size, a Bayesian frame-
work was implemented using semi-informed priors. 

Validation of the procedure, using real-world data, 
provides evidence that the combined application of 
methodologies (extreme value analysis, censoring) 
can yield accurate distributions of capacity. Com-
parisons to other methods of capacity estimation 
show illustrate the validity of the approach. We note 
that, since the procedure was applied to just one lo-
cation (just one set of data), we make no claim re-
garding transferability. Rather, we offer the analysis 
as a ‘proof of concept’ of our procedure. It is not 
clear that process can be suitably applied to locations 
dissimilar to that used in this analysis, and future 
work will certainly explore the application of the 
technique to more diverse road sections. With addi-
tional locations, a hierarchical model may possibly 
be pursued.  
Going forward, there are numerous other areas into 
which our work can be extended. First, this analysis 
considered the roadway as a homogenous unit and 
made no distinction between lanes (left, right, me-
dian, etc.). Identifying capacity distributions for in-
dividual lanes is a logical extension of this work as 
evidence suggests that traffic behavior between 
lanes may be quite dissimilar (Cassidy and Bertini, 
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1999). Also, the effect of driver behavior and traffic 
composition should be investigated. For example, in 
separate analyses, Hall (1995) and Bharadwaj 
(2016) identified that lane changes (weaving) and 
heterogeneity of traffic, respectively, have apprecia-
ble effects on the capacity of the roadway. Next, fol-
lowing Brilon et al. (2005), we may investigate the 
effect of external conditions such as rain/ inclement 
weather into our capacity estimates. Along these 
lines, Ponzlet (1996) demonstrated that capacities 
vary according to external conditions such as 
dry/wet road surfaces or daylight/darkness. So long 
as detailed, local records are available, identifying 
the effects of weather variables on capacity distribu-
tions is feasible. Lastly, and ultimately, our capacity 
models and corresponding predictions of conges-
tion/breakdown could be used to identify the ‘level 
of impact’ on the system. This is, of course, a com-
plicated topic that incorporates a variety of factors 
(among which are traffic flows), and a topic pursued 
by Zochowska (2014) in an urban network setting. 
Ultimately, as concluded by Zochowska (2014) for 
city systems, estimates of level of impact (probabil-
ity of congestion, say) could be conveyed to the user 
to improve the functioning of the transportation sys-
tem.  
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