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Abstract: In the paper a theoretical bases and empirical results deal with analysis and modelling of 

transportation networks in Poland using complex networks have been presented. Properties of complex 

networks (Scale Free and Small World) and network's characteristic measures have been described. In this 

context, results of empirical researches connected with characteristics of passenger air links network, express 

railway links network (EuroCity and InterCity) and expressways/highways network in Poland have been 

given. For passenger air links network in Poland results are compared with the same networks in USA, China, 

India, Italy and Spain. In the conclusion some suggestions, observations and perspective dealing with complex 

network in transportation networks have been presented. 
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1. Introduction 

Complex networks are specific graph and network 

models of real objects. Their significance is growing 

in recent years because of experimentation results on 

real topologies which confirm that real networks 

have some specific properties other than thought. 

Inspiration for complex networks is social 

networks1. Wide review of complex network 

applications is presented in (Bartosiak et al., 2011; 

Hage and Harary, 1995; Tarapata and Kasprzyk, 

2009; Wang et al., 2011; Watts and Strogatz, 1998). 

Many of real networks (from different fields) is 

complex networks with specific properties (power 

node degree distribution, high value of 

clusterization, low value of average distance 

between each pair of nodes in a network; these 

properties have been shortly described in section 3).  

Some results (Barabási and Albert, 1999; Berche et 

al., 2012; Cheung and Gunes, 2012; Von Ferber et 

al., 2009; Wang et al., 2011; Xie and Levinson, 

2009; Zanin and Lillo, 2013) confirm that 

transportation networks belong to this group. For 

example, the goals of the paper (Berche et al., 2012) 

are to present criteria that allow to a priori quantify 

the attack stability of real world correlated networks 

of finite size and to check how these criteria 

correspond to analytic results available for infinite 

uncorrelated networks in several major cities of the 

                                                 
11 Social networks describe relations (interactions) between members of some socialites. 

world. In the Cheung and Gunes (2012) authors 

analyze the air transportation network in the U.S. to 

better understand its characteristics. For this, they 

measure several complex network features and make 

some interesting conclusions. Authors of the paper 

(Von Ferber et al., 2009) use complex network 

concepts to analyze statistical properties of urban 

public transport networks in several major cities of 

the world. Authors of the paper (Wang et al., 2011) 

use a complex network approach to examine the 

network structure and nodal centrality of individual 

cities in the air transport network of China. The 

paper (Xie and Levinson, 2009) explores the 

topological evolution of surface transportation 

networks, using empirical evidence and a simulation 

model validated on that data. A self-organization 

property of surface transportation networks has been 

shown. Authors of the paper (Zanin and Lillo, 2013) 

review some recent approaches to air transport, 

which make extensive use of theory of complex 

networks. They discuss possible networks that can 

be defined for the air transport and they focus their 

attention to networks of airports connected by 

flights. Moreover, they discuss the results of some 

recent papers investigating the dynamics on air 

transport network, with emphasis on passengers 

traveling in the network and epidemic spreading 

mediated by air transport. 
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On the Fig.1a the air transportation network in USA 

is presented. Nodes represent cities (airports) and 

edges represent air communication between two 

nodes. This network is an example of a complex 

network holding some properties described in 

section 3. However, on the Fig.1b a part of street 

network in Sao Paulo (Brasil) is presented. We can 

see two characteristic parts of the network: first one 

with complex network features (outskirts of the city) 

and second one as regular graph2 (center of the city).  

 

 
Fig. 1. (a) Air transportation network in USA (Lima, 

2004) and (b) a part of street network in Sao 

Paulo (Brasil) (Travençolo and Costa, 2008) 

 

The goal of this paper is to examine whether selected 

transportation networks in Poland have features 

specific for complex networks. Confirmation of this 

hypothesis would allow us to predict evolution of the 

                                                 
2 In regular graph, each node has the same degree (count of neighbours nodes directly connected by links with considered 

node). 

networks and use the conclusions resulting from 

other researches relating to complex networks. 

The paper is organized as follows. In the section 2 

and 3 we present basic network measures 

(characteristics) and properties of complex 

networks.  Section 4 contains results of research of 

passenger air links network, express railway links 

network (EuroCity and InterCity) and 

expressways/highways network in Poland in context 

of complex network properties. 

 

2. Centrality measures in networks 

Let assume that structure of the complex network is 

described by the directed (or undirected) graph

,G V E , where V describes set of nodes and E 

describes set of arcs (or edges), |V|=N, |E|=M. 

We can address the question of: “What is the most 

important or central node in a given network?” 

Centrality measures (defined below) are the most 

basic and frequently used methods for analysis of 

complex networks. 

Normalized degree dci of the i-th node: 

 

1

i
i

k
dc

N



 (1) 

 

where: ki describes degree of the i-th node in the 

graph G. This measure gives the highest score of 

influence to the node with the largest number of 

first-neighbours (normalized over the maximum 

number of neighbours this node could have). The 

higher dci value, the better (the i-th node is more 

important or more central). 

Eccentricity eci of the i-th node (Hage and Harary, 

1995): 

 

maxi ij
j V

ec d


  (2) 

 

where: d
ij
 – length of the shortest path in G between 

the i-th and the j-th node (number of arcs (edges) on 

the shortest path from i do j). The lower eci value, 

the better (the i-th node is more important or more 

central). 

Radius (graph centrality) rci of the i-th node 

(Brandes, 2001): 

a) 

b) 
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The higher rci value, the better. It means that the best 

is such i-th node with the smallest value of the 

longest of the shortest path from i to each node (the 

i-th node is more important or more central). 

Closeness cci of the i-th node (Brandes, 2001): 
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  (4) 

 

The higher cci value, the better (the i-th node is more 

important or more central). In the other words, the 

more central a node is the lower its total distance 

from all other nodes. 

Betweenness (load) bci of the i-th node (Brandes, 

2001)3: 
 

, ,

,

l i k

i

l V k l V l k
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   (5) 

 

where: p
l,i,k

 – count of the shortest paths in G 

between l and k nodes visiting the i-th node, p
l,k

 – 

count of the shortest paths in G between l and k 

nodes. Betweenness centrality quantifies the number 

of times a node acts as a bridge along the shortest 

path between two other nodes. The higher bci value, 

the better (the i-th node is more important or more 

central). 

Clusterization gci of the i-th node (Latapy, 2008; 

Watts and Strogatz, 1998): 
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where: E
i
 – count of arcs (edges) between firs-

neighbours of the i-th node. 

This measure describes “probability” that the first 

neighbours4 of the i-th node are their first 

neighbours, too. In the other words, this is the 

                                                 
3 In undirected graphs value of this measure is divided by 2 (between each pair of nodes x, y and y, x the same count of 

shortest paths exist). 
4 Commonly, first-neighbours of the i-th node are such nodes which directly link (by an arc or an edge) the i-th node. 
5 Triangle in a graph (network) is such a part of the graph (subgraph) consisting of three nodes, that each of the nodes is 

linked (by an arc or an edge) with each other (a clique with 3 nodes). 

relation of all triangles5 existing in a network to all 

potential triangles in a network. The higher gci 

value, the better (the i-th node is more important or 

more central). 

Measures (1)-(6) describe characteristics of graph 

(network) nodes.  

Let’s define basic characteristics for whole graph 

(network). 

Average shortest paths length L in a network (the 

lower L value, the better) - Watts and Strogatz, 

(1998): 
 

1

( 1)
ij

i j V

L d
N N  




  (7) 

 

Clusterization coefficient C of a network (the higher 

C value, the better) ) - Watts and Strogatz, (1998): 

 

1
i

i V

C gc
N 

   (8) 

 

Diameter D of a network (the lower D value, the 

better) - Hage and Harary (1995): 

 

max i
i V

D ec


  (9) 

 

Radius R of a network (the lower R value, the 

better) - Hage and Harary (1995): 
 

min i
i V

R ec


  (10) 

 

Average nodes degree k of a network (the higher 

k  value, the better) ) - Watts and Strogatz, (1998): 

 

1
i

i V

k k
N 

   (11) 

 

3. Basic properties of complex networks 

Identifying and measuring properties of real 

networks is a first step towards understanding their 

topology, structure and dynamics. The next step is to 

develop a mathematical model, which typically 
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takes a form of an algorithm for generating networks 

with the same statistical properties. Apparently, 

networks derived from real data (most often are 

spontaneously growing) have a low average dij, 

power law degree distributions  

(   ~P k k  , where   is a constant, k is degree of 

node in a network), occurrence of hubs (nodes with 

much higher degrees than the average node degree), 

tendency to form clusters and many other interesting 

features. Three very interesting models, which 

capture these features, have been introduced 

recently: Random Graph, Small World and Scale 

Free.  

Figure 2 presents networks generated using these 

models. The leftmost picture in Fig.2 shows Erdős’ 

and Rényi’s model of the Random Graph presented 

in Erdős and Rényi (1959). It is unfortunately an 

inaccurate model of real networks due to the lack of 

features that the remaining two models have. The 

middle picture shows an example of Watts and 

Strogatz, (1998) Small World network. It is 

characterized by a high clustering coefficient and a 

small average shortest path length. A graph is 

considered small-world if C is significantly higher 

than C  of a random graph constructed on the same 

node set, and if the graph has got approximately the 

same average shortest path length L (
ln

~
ln

N
L

k
 and 

it weakly depend of network size) as its 

corresponding random graph. The rightmost picture 

shows an example of Barabási and Albert (1999) 

Scale Free network which has some additional 

values in comparison with networks generated using 

the Small World model. It is characterized by a node 

degree distribution that follows a power law (as it 

has been written: ( ) ~P k k 
, in real Scale Free 

networks <3). Power degree distribution decides 

that majority of nodes (so called authorities) has low 

degree and minority of them (so called hubs) has 

high degree. Scale Free network is very resistance 

to random attacks but is very non-resistant to 

targeted attacks (Tarapata and Kasprzyk, 2010). 

From the point of view of communication in a 

network, it is very fast but propagation of faults, 

viruses, accidents is fast, too. It has been the most 

accurate model since many empirically observed 

networks appear to be Scale Free, including social 

networks, Internet, WWW, citation networks, 

bionetworks, etc.  

 

4. Characteristics of selected transportation 

networks in Poland 

In this section we present results for exploring three 

transportation networks in Poland: passenger air 

links network, express railway links network 

(EuroCity (EC) and InterCity (IC)) and 

expressway/highway network. To model these 

networks and calculate values of their characteristics 

the Gephi (Gephi: webpage) open source software 

for exploring and manipulating graphs and networks 

has been used. 

 

 

 
Fig. 2. From the left – a Random Graph, a Small World network and a Scale Free network  

Source: Bartosiak et al. (2011). 
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Fig. 3. Network S1 of passenger air links in Poland, March 2013  

Source: own work on the basis of Eurolot (LOT) and SprintAir data. 

 
The network S1 from Fig. 3 (nodes – airports, edges 

– air links) with centrality measures presented in the 

Table 1 consists of 10 nodes and 12 edges (on each 

edge the name of carrier is described). Node degree 

distribution in this network (Fig.4) is similar to 

power distribution: there is single central node 

(Warszawa), which has high degree and majority of 

nodes has low degree. Moreover, node Warszawa 

has the highest value of betweenness centrality; it 

means that air communication between two different 

nodes in this network, in majority cases, need 

Warszawa node for change (small number of direct 

connections between two nodes in the network). 

There is one more interesting feature of betweenness 

in this network: there are 7 nodes with bci=0. Taking 

into account formula (5), it means that there is no 

pair of nodes in the network which need as a change 

airport each of these 7 nodes (airports). Value of 

eccentricity measure equal 1 for Warszawa means 

that the longest of the shortest paths from Warszawa 

to all cities is equal 1 (Warszawa has direct air 

connection to each city). 

 
Table 1. Centrality measures of nodes in the network S1 from Fig.3  

Node 
i 

Degree 
ki 

Normalized degree 
dci 

Eccentricity 
eci 

Radius  
rci 

Closeness  
cci 

Betweenness  
bci 

Clusterization 
gci 

Bydgoszcz 1 0.11 2 0.5 1.89 0 0 

Gdańsk 3 0.33 2 0.5 1.67 0.5 0.67 

Katowice 1 0.11 2 0.5 1.89 0 0.17 

Kraków 3 0.33 2 0.5 1.67 0.5 0.67 

Poznań 2 0.22 2 0.5 1.78 0 1 

Rzeszów 1 0.11 2 0.5 1.89 0 0 

Szczecin 1 0.11 2 0.5 1.89 0 0 

Warszawa 9 1 1 1 1 32 0.08 

Wrocław 2 0.22 2 0.5 1.78 0 1 

Zielona Góra 1 0.11 2 0.5 1.89 0 0 
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Fig. 4. Node degree distribution in the S1 network from Fig. 3 

 

In the Table 2 a comparison of characteristics for 

network from Fig.3 with analogical networks in the 

world have been given (a little different values of 

parameters from the Table 2 for USA are given in 

Cheung and Gunes (2012) and for China in Wang et 

al. (2011)). The network in Poland has small average 

distance between any pair of nodes (L=1.73; it 

means that about 0.73 changes is needed in average 

case to achieve any node in the network from 

another node) and it is the smallest value among 

other networks in the Table 2, but simultaneously it 

has small value of clusterization C (the smaller value 

of this coefficient has network in Italy only). Taking 

into account interpretation of this measure, we can 

say that in Poland “probability” that the first 

neighbours of any node are their first neighbours is 

equal C=0.36.  

 

Table 2. Characteristics of passenger air 

transportation networks in the world 

(Zanin and Lillo, 2013) and in Poland 

Network N M L C  

World 3883 27051 4.4 0.62 1.0 

USA 272 6566 1.9 0.73 2.63 

China 128 1165 2.07 0.73 4.16 

India 79 442 2.26 0.66 2.2 

Italy 42 310 1.97 0.10 1.7 

Spain 35 123 1.84 0.78 - 

Poland 10 12 1.73 0.36 - 

 

Network S2 from Fig.5 (nodes – EC/IC railway 

stations, edges – EC/IC railway connection; node 

characteristics are presented in the Table 3) consists 

of 13 nodes and 14 edges (on the edges the type of 

connection is described). Node degree distribution 

in this network (Fig.6) is similar to power 

distribution: a few central nodes (Warszawa, 

Poznań, Katowice) exist, which has high degree and 

majority of nodes has low degree. This network has 

small average distance between any pair of nodes 

(L=2.72; it means that about 1.72 changes is needed 

in average case to achieve any node in the network 

from another node) but simultaneously it has small 

value of clusterization C=0.1.  

 

 

Fig. 5. Network S2 of express railroad connections 

in Poland, 2007 year  

Source: own work on the basis of 

http://www.intercity.pl 
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Table 3. Centrality measures of nodes in the network S2 from Fig.5 

Wierzchołek  
i 

Degree 
ki 

Normalized 

degree 
dci 

Eccentricity 
eci 

Radius  
rci 

Closeness  
cci 

Betweenness  
bci 

Clusterization 
gci 

Gdańsk 2 0.17 4 0.25 2.42 20 0 

Gdynia 2 0.17 5 0.20 3.17 11 0 

Gliwice 2 0.17 5 0.20 2.50 5 0 

Katowice 4 0.33 4 0.25 2.17 17 0.17 

Kraków 2 0.17 4 0.25 2.50 0 1 

Łeba 1 0.08 6 0.17 4.08 0 0 

Poznań 4 0.33 4 0.25 2.00 30 0 

Rzepin 1 0.08 5 0.20 2.92 0 0 

Szczecin 1 0.08 5 0.20 2.92 0 0 

Warszawa 4 0.33 3 0.33 1.83 37 0.17 

Wrocław 3 0.25 5 0.20 2.42 14 0 

Zebrzydowice 1 0.08 5 0.20 3.08 0 0 

Żary 1 0.08 6 0.17 3.33 0 0 

 

 

 
Fig. 6. Node degree distribution in the S2 network from Fig.5 

 

 

Network S3 from Fig.7 (nodes – main 

expressway/highway nodes, edges – part of 

expressway/highway; node characteristics are 

presented in the Table 4) consists of 57 nodes and 80 

edges (on the edges name description of 

expressway/highway is given). Node degree 

distribution in this network (Fig.8) is similar to 

power distribution: a few central nodes (Warszawa, 

Łódź, Szczecin) exist, which has high degree and 

majority of nodes has low degree. This network has 

relatively small average distance between any pair 

of nodes (L=4.77; it means that about 3.77 changes 

is needed in average case to achieve any node in the 

network from another node) but simultaneously it 

has small value of clusterization C=0.1. Moreover, 

node Warszawa has the highest value of 

betweenness centrality; it means that travelling by 

expressways/highways only between two different 

nodes in this network, in majority cases, need 

Warszawa node for change. 
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Fig. 7. The target structure of the network S3 of expressways and highways in Poland 

Source: own work on the basis of Polish GDDKiA. 
 

Table 4. Centrality measures of nodes in the network S3 from Fig.7 

Node 

i 

Degree 

ki 

Normalized 

degree 

dci 

Eccentricity 

eci 

Radius  
rci 

Closeness  

cci 

Betweenness  

bci 

Clusterization 

gci 

Barwinek 1 0,018 9 0,111 5,679 0 0 

Białystok 3 0,054 9 0,111 4,893 60,924 0 

Bielsko-Biała 3 0,054 8 0,125 4,768 109 0 

Bolesławiec 3 0,054 10 0,100 5,5 109 0 

Budzisko 1 0,018 9 0,111 5,286 0 0 

Bydgoszcz 4 0,071 7 0,143 4,054 127,455 0,167 

Cieszyn 1 0,018 9 0,111 5,750 0 0 

Dorohusk 1 0,018 11 0,091 6,411 0 0 

Elbląg 3 0,054 8 0,125 4,946 81,955 0 

Garbów 3 0,054 8 0,125 4,054 81,722 0,333 

Gdańsk 3 0,054 9 0,111 4,946 69,694 0 

Gliwice 4 0,071 7 0,143 3,804 236,429 0,167 

Gorzów Wlkp. 2 0,036 9 0,111 5 32,889 0 

Gorzyce 1 0,018 8 0,125 4,786 0 0 

Grudziądz 3 0,054 8 0,125 4,5 39,380 0,333 

Grzechotki 1 0,018 9 0,111 5,929 0 0 

Hrebenne 1 0,018 11 0,091 6,411 0 0 

Jędrzychowice 1 0,018 11 0,091 6,482 0 0 

Kępno 4 0,071 7 0,143 3,714 145,508 0 

Kielce 4 0,071 8 0,125 4,107 126,694 0,167 
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Kołbaskowo 1 0,018 10 0,100 5,875 0 0 

Korczowa 1 0,018 9 0,111 5,679 0 0 

Koszalin 3 0,054 9 0,111 4,964 62,925 0,333 

Kraków 4 0,071 7 0,143 4,125 192,860 0 

Kukuryki 1 0,018 9 0,111 5 0 0 

Kuźnica B. 1 0,018 10 0,100 5,875 0 0 

Legnica 4 0,071 9 0,111 4,589 234,564 0 

Lubawka 1 0,018 10 0,100 5,571 0 0 

Lublin 4 0,071 9 0,111 4,518 205,824 0 

Łódź 5 0,089 6 0,167 3,589 288,163 0,1 

Międzyrzec P. 4 0,071 8 0,125 4,018 189,624 0 

Mysłowice 4 0,071 7 0,143 3,857 282,439 0,167 

Nisko 3 0,054 9 0,111 4,679 102,673 0 

Olsztyn 1 0,018 10 0,100 5,643 0 0 

Olsztynek 3 0,054 9 0,111 4,661 125,555 0 

Olszyna 1 0,018 11 0,091 6,482 0 0 

Ostrów Maz. 3 0,054 8 0,125 4,304 96,8 0 

Pabianice 3 0,054 6 0,167 3,911 30,727 0,333 

Piaski 3 0,054 10 0,100 5,429 109 0 

Piekary Śląskie 4 0,071 6 0,167 3,571 221,199 0,167 

Piła 4 0,071 8 0,125 4,250 195,705 0,167 

Piotrków Tryb. 5 0,089 7 0,143 3,589 244,038 0,2 

Płońsk 3 0,054 8 0,125 3,929 204,627 0 

Poznań 4 0,071 7 0,143 3,750 271,675 0 

Rabka 1 0,018 8 0,125 5,107 0 0 

Radom 4 0,071 7 0,143 3,786 54,720 0,5 

Rzeszów 4 0,071 8 0,125 4,696 131,243 0 

Rzgów 3 0,054 6 0,167 3,875 20,993 0,333 

Szczecin 5 0,089 9 0,111 4,893 131,889 0,1 

Świebodzin 4 0,071 8 0,125 4,429 150,264 0 

Świecko 1 0,018 9 0,111 5,411 0 0 

Świnoujście 1 0,018 10 0,100 5,875 0 0 

Toruń 4 0,071 7 0,143 4,089 133,431 0,167 

Warszawa 7 0,125 7 0,143 3,429 556,246 0,095 

Wrocław 4 0,071 8 0,125 3,911 319,605 0 

Września 4 0,071 6 0,167 3,554 233,560 0 

Zwardoń 1 0,018 9 0,111 5,750 0 0 

 

 
Fig. 8. Node degree distribution in the S3 network from Fig.7 
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In the Table 6 we present comparison between 

network characteristics of passenger air links (S1), 

express railroad IC and EC (S2) and 

expressways/highways (S3) in Poland.  

 

Table 6. Characteristics of passenger air links (S1), 

express railroad IC and EC (S2) and 

expressways/highways (S3) in Poland 

Network N M D R L C k   

S1 10 12 2 1 1.73 0.36 2.60 - 

S2 13 14 6 3 2.72 0.10 2.15 0.71 

S3 57 80 11 6 4.77 0.10 2.81 2.97 

 

5. Conclusions 

The results obtained in the paper allow us to 

conclude that transportation networks in Poland 

have features of complex networks. Indeed, low 

value of clusterization coefficient in the networks S2 

and S3 force us to consider whether these networks 

have Small World features (S2 has very small size). 

Otherwise, we know that selected transportation 

networks (e.g. street network in a city) have specific 

feature (the closer a city centre, the better visible): 

node degree has the same value equals 4 

(perpendicular crossroads), so they are local regular 

networks (see Fig.1b). However, many results of 

research (e.g. in Berche et al. (2012), Von Ferber et 

al. (2009)) show: the higher scale of the network 

(from micro-network to macro-network) the better 

visible Scale Free and Small World features of 

transportation networks. Note that in S1 network we 

can see one of the disadvantages of Scale Free 

networks: if we conduct target attack/block on a 

node with highest value of degree (Warszawa), then 

we degrade this network after the first attack/block. 

It means that majority of nodes would have no 

possibilities to achieve majority of nodes by air 

transport (because Warszawa is change airport for 

travelling). 
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