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Abstract: The paper deals with a novelty related to the design of a region for an alternative railway track 

direction adequate for mobile satellite measurements. The new approach may become particularly useful in 

the design of the existing track axis control when the determination of both the main track directions becomes 

impossible. The only solution in that case is to apply to the geometrical system two circular arcs of a different 

radius, namely, to take advantage of compound curves. In the presented method the design of a new system 

is carried out by the use of the local system of coordinates. The solution of the design problem is aided by 

mathematical recording and is based on the determination of some universal equations describing the entire 

geometrical system. This procedure takes place sequentially involving consecutive parts of the system. The 

method has been illustrated by an appropriate calculation example. 
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1. Introduction  

The global positioning system GPS (Specht, 2007) 

opens up possibilities for determining the 

coordinates of points in a uniform 3-D system of 

coordinates WGS 84 the outset of which is in the 

centre of the Earth’s mass. Some improvements in 

railway track effective measurements have been 

made by a research team of the Gdansk University 

of Technology in cooperation with the Polish Naval 

Academy in Gdynia, relating to the technique of 

continuous (mobile) satellite measurements (Koc 

and Specht, 2009; Koc and Specht, 2010; Koc and 

Specht, 2011; Specht et al., 2011) by making 

inspection tours along railway track sections under 

test using antennas installed on a moving rail-

vehicle. 

Effective use of the GPS for the design, inventory 

and exploitation has become possible in Poland 

since the mid-2008 when the national Active 

Geodetic Network (ASG−EUPOS) was put into 

operation. As early as the beginning of 2009 a 

research team of the Gdańsk University of 

Technology and the Polish Naval Academy in 

Gdynia, in cooperation with the Institution of Polish 

Railway Lines PKP PLK S.A. in Gdynia, and also 

the Leica Geosystems Company carried out an 

experiment in field on the utilization of satellite 

mobile techniques to determine the position of the 

railway track axis. The measurements were of a pilot 

investigation and were aimed at finding out if the 

satellite method of continuous measurements can 

prove useful for the determination of the geometrical 

shape of track in horizontal plane. 

By the use of a trailer (a flat car) PWM-15 and a rail 

tractor WM-15 it was possible to produce a 

prototype of the railway measuring set. The floor of 

the trailer is equipped with specially designed and 

constructed steel footings for installing on it some 

levelling heads needed for antennas to receive 

satellite signals. The first satellite measurements 

(carried out on a railway line measuring length of 

over 30 km) have already proved that the applied 

measuring technique opens up entirely new 

perspectives. Its utilization allows for very precise 

determination of data necessary for the design of 

railway track modernization (main directions and 

the turning angle of the route) (Koc et al., 2012; Koc 

et al., 2013). Making use of the obtained results one 

can verify the measuring technique, the applied 

equipment and its positioning.  

The mobile satellite measurements make it possible 

to determine the coordinates of the existing railway 

track in the Polish state coordinate system PUW 

2000 (Regulation of the Council of Ministers 2000, 

2012) hereafter referred to as the system 2000. 

Under such circumstances it is obvious that the 

system should also be provided with the coordinates 

of the newly designed track axis necessary for the 

layout of the route in field. This calls for a change of 

the current design procedure.  

General principles for designing track geometrical 

layout have been established in the early days of 
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railway development during the first half of the XIX 

century. Although the method of designing has a 

very long tradition it had been improved for the 

decades, the effects of this process have been shown 

in the fundamental work of Bałuch (1983). The 

developed calculation algorithms were then 

implemented in commercial Computer Aided 

Design software. However, searching for new 

solutions were continued and the issue of transition 

curves were an essential part of it (Arslan et al., 

2014; Kobryń, 2014; Tari and Baykal, 2005; Tasci 

and Kuloglu, 2011; Zboiński and Woźnica, 2010). 

Characteristic feature of the used designing 

methodology is taking into account each element of 

the layout separately i.e. strait sections, circular arcs, 

transition curves. In the joints of this elements some 

problems appeared; the designing of the returning 

route various simplifying assumptions were 

performed. However, such geometrical layout 

should be treated as a one system with and 

calculated in an exact way. This conditions are 

satisfied for the analytical method of designing 

presented in this work. Examples of new methods 

for designing the region of the route direction 

change, accomodated to the mobile satellite 

measurements technique are given in papers (Koc, 

2011; Koc, 2012a; Koc, 2012b). The new computer-

aided design programs have also been prepared (Koc 

and Chrostowski, 2012; Koc and Chrostowski, 

2014). 

To make use of the obtained measuring data the 

region for the alternative route direction, being of 

interest to us, should be separated from the entire 

geometric system and subjected to an adequate 

transformation (rearrangement and rotation) of the 

coordinate system (Koc and Specht, 2009). The 

most advantageous situation will be if the new 

coordinate system of x, y can ensure a symmetrical 

position of the geometric system corresponding to 

the plotted main directions of the route (as seen in 

Fig. 1). In other words, the angles of both main routes 

directions with respect to the horizontal axis should be 

the same. Here the following relations should be 

satisfied (Korn GA and Korn TM, 1983): 
 

x = (Y – Y0) cos  + (X – X0) sin  (1) 

y = – (Y – Y0) sin  + (X – X0) cos    (2) 

 

where:  

Y − abscissa of the measuring point in the system 

2000, 

X   − ordinate of the measuring point in the system 

2000, 

Y0  − abscissa of the outset of the local system of 

coordinates, 

X0  − ordinate of the outset of the local system of 

coordinates, 

β  − turning angle of the system 2000. 

 

 

 
Fig. 1. The whole geometric system analyzed in view of the local coordinate system
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In the situation of a region to be subject to route 

direction change the design will most often be based 

on such a correction of the circular arc radius and 

type and lengths of the transition curves that the new 

geometric system can be most advantageous from 

the point of view of rail vehicle motion kinematics (i.e. 

the generation of transverse acceleration is as little 

as possible and changing smoothly), and that at the 

same time its position in the horizontal plane does 

not divert too much from the current one. As the 

satellite measurements, that have been carried out so 

far, indicate, the shape of the railway track in use is 

often so deformed that the determination of the main 

directions is impossible. Thus the use of a model 

system in the design based on the pattern transition 

curve − circular arc − transition curve, is excluded. 

The only problem to be solved is then to introduce 

into the geometrical system two circular arcs of 

different radii, which means to use compound 

curves.  

According to the European Standard (EN 13803-

1:2010) the compound curve ”is sequence of curved 

alignment elements, including two or more circular 

curves in the same direction; the compound curve 

may include transition curves between the circular 

curves and / or the circular curves and the straight 

tracks”. It is exactly this question that has become 

the object of this study. It should be pointed out at 

this place that the investigation deals here both with 

a symmetric (Koc, 2011; Koc, 2012a) (i.e. 

consisting of circular arc and the same type and 

length two transition curves) and also as an 

asymmetric (Koc, 2012b) (the type and length of the 

of transition curves may vary) approach to the 

problem. In fact the compoud curves can easily be 

reduced to a single circular arc with a determined 

radius. 

In the presented method the design of a new 

geometric system takes place within the local 

coordinate system x, y (Fig. 1). Every geometric 

system can be provided with numerous local 

systems of coordinates (LCS), each of which is 

determined in terms of system 2000 by the adopted 

coordinates of its initial point. However, the position 

of the initial point for the newly designed geometric 

system at this stage is not known. It is only certain 

that the point should outline the beginning of the 

transition curve and lie on the straight which 

coincides with the main direction of the route. As 

soon as the whole design procedure with the system 

x, y is completed it is possible to determine the 

coordinates of LCS initial point in the system 2000.  

The most significant element in the new procedure 

is the fact that the solution of the design problem is 

based on the determination of some universal 

equations describing the entire geometric system. 

Thus the creation of consecutive variants of the 

course of the route is not carried out by means of a 

graphic technique (e. g. by the use of AutoCAD 

program), but by the application of consecutive 

design values to appropriate mathematical formulate 

(radii of arcs and lengths of transition curves). An 

analytical recording is made sequentially covering 

successive parts of the geometric system of the 

route: the first transition curve (TC1), the first 

circular arc (CA1), the second transition curve 

(TC2), the second circular arc (CA2), and the third 

transition curve (TC3). The major accepted principle 

is to ensure conformity with tangents at connection 

points between particular geometrical elements. 

 

2. First Transition Curve (TC1)  

The procedure begins with the determination of the 

ordinates of the transition curve TC1 of length 1l , 

connecting the straight with the circular arc CA1 of 

radius 1R , situated in the auxiliary system of 

coordinates 1 1Ox y  (Fig. 1). The choice of the type of 

curve defines the function of its curvature  1k l  on 

the basis of which it is possible to formulate the 

transition curve expressed in parametric form  1x l  

and  1y l  (where parameter l is the position of a 

given point along the length of a curve).  

In view of further proceeding the value of tangent 

 '

1 1y l  is significant at the end of the curve occurring 

in the formula for this tangent at the end of curve 

TC1 used in coordinate system Oxy .  
 

   '

1 1 1 1tany l l     

 

where  1 l   ̶ function of the angle of the tangent 

to the curve TC1 
 

   1 1     l k l dl    
 

For example, the clothoid transition curve with a 

linear curvature is characterized by the following 

function 
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 1

1 1 

l
k l

R l
  

 

and the inclination angle of the tangent 
 

 
2

1

1 12   

l
l

R l
   

 

At the end of the transition curve TC1 the following 

expression is valid 
 

  1
1 1

1

 

2 

l
l

R
   

 

As it turns out, the same value  1 1  l  is also at the 

end of other forms of transition curves, therefore 

regardless of the type of the transition curve 
 

 ' 1
1 1

1

tan
2 

l
y l

R
   

 

The next step in the operation is the transformation 

of transition curve TC1 to the assumed local 

coordinate system by turning its reference system 

through angle α/2. As a result of the operation, 

parametric equations of the transition curve in terms 

of the local coordinate system are obtained (Korn 

GA and Korn TM, 1983): 
 

     1 1cos  sin
2 2

x l x l y l
 

   (3) 

     1 1sin    cos 
2 2

y l x l y l
 

    (4) 

 

Parameter occurring in equations (3) and (4) 
10,  l l

while the abscissa of transition curve 
10,   Kx x , 

where: 
 

   1 1 1 1 1 1cos  sin
2 2

K TCx l x l y l
 

    (5) 

 

The final ordinate of transition curve TC1 is 
 

     1 1 1 1 1 1sin      cos 
2 2

K TCy y l x l y l
 

     (6) 

 

The value of the slope of the tangent at the end of 

curve TC1 is described by formula 
 

1
1

1

tan
2  2

K

l
s

R

 
   

 
  (7) 

3. First Circular Arc (CA1)  

Schematic diagram for the determination of the 

circular arc CA1 equation is presented in Fig. 2. 

Every characteristic sections of the geometrical 

layout were presented. The tangents intersecting in 

the point 1M  that are passing through points 1K  and 

2O  are determined in a conventional way with their 

inclinations, in sequence 1Ks  and 2Os . 

In order to form the equation of the circular arc CA1, 

it is necessary to determine at first the position of its 

centre, i. e. point  1 1 1,S SS x y , in terms of the 

coordinate system Oxy (Fig. 2). The circular arc 

must be tangent to the transition curve TC1 at its end, 

that is, at point K1, whereas the radius of circular arc 

CA1 will be situated on the straight perpendicular to 

the tangent lying at point K1. The mid-point circular  

arc coordinates are calculated from the system of 

equations with the following conditions: 10 point 1S  

is on this straight line, 20 the distance between points 

1S  and 1K  is equal to 1R . The coordinates of point 

1S  are as follows: 

 

1
1 1 1

2

1

 
1

K
S K

K

s
x x R

s
 


  (8) 

1 1 1
2

1

1
 

1
S K

K

y y R
s

 


  (9) 

 

Now it is possible to take down the circular arc CA1 

equation. 
 

   
1

22 2

1 1 11 S SCA
y x y R x x    

 
, 1 2, K Ox x x  (10) 

 

To find the position of the circular arc CA1 end, i. e. 

point  2 2 2 , O OO x y , one should assume the length 

of arc 1Rl  , and then determine the coordinates of 

point  1 1 1 , M MM x y  lying on the intersection of 

tangents to CA1 drawn from both ends of the arc 

(Fig. 2). The coordinates of point 1M  are calculated 

from the system of equations with the following 

conditions: 10 point 1M  is on the tangent to CA1 in 

the point 1K , 20 the distance between points 1K  and 

1M is equal to: 
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1
1 1 1 tan

2
K M R


  

 

Calculated coordinates are: 
 

1

1 1 1
2

1

tan
2    

1
M K

K

x x R
s



 


 (11) 

1
1

1 1 1
2

1

 tan
2  

1

K

M K

K

s
y y R

s



 


 (12) 

 

where 1  is the tangents' turning angle of arc CA1 

whose value is 1
1

1

Rl

R
  . 

Point 2O  lies on the straight which is tangent to CA1 

passing through point 1M  , while the slope of 2 Os

of the tangent to CA1 at point 2O  is 
 

 2 1 1tan atan  O Ks s    (13) 

 

Hence it is possible to determine the coordinates of 

point O2( 2 2 , O Ox y ). 

1

2 1 1
2

2

tan
2  

1
O M

O

x x R
s



 


  (14) 

1
2

2 1 1
2

2

 tan
2  

1

O

O M

O

s
y y R

s



 


  (15) 

 
Fig. 2. Schematic diagram for the determination of the circular arc CA1 equation  
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4. Second Transition Curve (TC2)  

Transition curve TC2 of length 2l  connects circular 

arcs of radii 1R  and 2R . It is found in the auxiliary 

system of coordinates 2 2 2  O x y (Fig. 1). The method 

of determining curvature  2k l  and its parametric 

equations  2x l  and  2y l , where 
20 , l l  has 

been presented in papers (Koc, 2014; Koc and 

Palikowska, 2012a; Koc and Palikowska, 2012b). In 

the case of a linear change of the curvature the 

obtained curve was referred to, in the above papers, 

as curve of class C0, while with regard to nonlinear 

curvature (in the form of cubic equation) the curve 

was qualified as class C1.  

The value of tangent to TC2 amounts to: 
 

   '

2 2 tany l l     , where    2 2l k l dl   . 

 

At the end of TC2 (i. e. for 2l l ) 
 

   '

2 2 2 2tany l l      

 

In the case of linear curvature 
 

 ' 2
2 2

1 2

1 1
tan  

2

l
y l

R R

  
    

   
 

 

The transformation of TC2, into the local system of 

coordinates x, y , is carried out using the auxiliary 

system of coordinates 
2x , 

2y  (Fig. 1) obtained by a 

turn of the system 2 2 2O x y  through an angle of 

2 2atan Os  . 
The parametric equations of the transition curve TC2 

are as follows: 
 

   2 2Ox l x x l   (16) 

   2 2Oy l y y l  , 
20, l l   (17) 

 

whereas for 2 2atan 0Os    

     2 2 2 2 2cos sinx l x l y l      

     2 2 2 2 2sin cosy l x l y l    , 
20, l l  

and for 2 2atan 0Os    

     2 2 2 2 2cos sinx l x l y l     

     2 2 2 2 2sin cosy l x l y l     , 
20, l l  

 

Hence the expressions for 2TCl  and 2TCy  are: 
 

 2 2 2TCl x l   (18) 

 2 2 2TCy y l   (19) 

 

and the coordinates of point 2K  (of the end of TC2): 
 

 2 2 2 2K Ox x x l   (20) 

 2 2 2 2K Oy y y l   (21) 

 

The value of tangent 2  Ks at point 2K  results from 

the inclination angle of the tangent at the end of the 

curve TC2 in the auxiliary coordinate system 2 2,x y  

(Fig. 1), performed in the coordinate system x, y.  
 

 2 2 2 2tanKs l       (22) 

 

5. Second Circular Arc (CA2)  

In Fig. 3 schematic diagram for the determination of 

the circular arc CA2 equation is presented. Similarly, 

as in the case of the first circular arc, intersecting 

tangents passing through points 2K  and 3K  are 

determined in a conventional way with their 

inclinations, in sequence, 2Ks  and 3Ks . To take 

down the equation for the circular arc CA2, it is 

necessary to determine the position of its centre, that 

is, point  2 2 2 , S SS x y  in the Oxy coordinate system.  

The circular arc should be tangent to transition curve 

TC2 at its end, i. e. at point 2K , and the radius of the 

circular arc 2R  will be found on the straight 

perpendicular to the tangent lying at point 2K . At 

this stage of operation it is still too early to know the 

value of tangent 3  Ks at its end and the position of the 

arc end, namely, the coordinates of point 

 3 3 3 , K KK x y . 

The coordinates of the circular arc CA2 centre are as 

follows: 
 

2
2 2 2

2

21

K
S K

K

s
x x R

s
 


  (23) 
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Fig. 3. Schematic diagram for the determination of the circular arc CA2 equation 

 

2 2 2
2

2

1

1
S K

K

y y R
s

 


 (24) 

 

The circular arc CA2 can be also expressed in the 

form. 
 

   
1

22 2

2 2 22

2 3 ,

S SCA

K K

y x y R x x

x x x

    
 



  (25) 

 

6. Third Transition Curve (TC3)  

Transition curve TC3 has length 3l  and is localized 

in the auxiliary system of coordinates 3 3 3O x y  (Fig. 

4), but a precise position of point 3O  is still 

unknown at this stage (it is only obvious that it lies 

on the other direction of the main route). However, 

using this system it is possible to model the 

transition curve itself and to find out its basic data 

necessary for the determination of coordinates of 

point 3K  , i. e. values 3TCl  and 3TCy . The choice 

of the type of curve determines the function of its 

curvature  3k l  on the basis of which one can form 

the parametric equations  3x l  and  3y l  of the 

transition curve. 

In view of a further procedure of operation the value 

of tangent at the end of the curve, i. e.  '

3 3y l  

becomes significant. It enables us to find out the 

value of this tangent within the local system of the 

Oxy coordinates. Regardless of the type of the 

transition curve 
 

 ' 3
3 3

2

tan
2 

l
y l

R

 
   

 
 

 

It is also possible to make a transformation of the 

curve points to the auxiliary system of coordinates 

3x , 
3y  (Fig. 4). For the reason that the axes of the 

system are parallel to the axis of the local Oxy 

system, the operation will be correct to determine 

3TCl  and 3 TCy . The coordinates of the curve points 

in the 
2 3 3O x y  system are defined by parametric 

equations: 

 

y 

 

x 

 

𝐾2    

 

𝐾3    

 

𝛼3   

 

𝑠𝐾2    

 

𝑠𝐾3    

 𝑥𝐾2    

 

𝑥𝐾3    

 

𝑥𝑆2    

 

𝑆2    

 

𝑅2   

 
𝑅2   
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Fig. 4. Schematic diagram for the determination of the transition curve TC3 equations 

 

     3 3 3cos sin
2 2

x l x l y l
 

    (26) 

     3 3 3sin cos
2 2

y l x l y l
 

     (27) 

 

Parameter 3  , 0l l   , while the transition curve 

abscissa  3 3   , 0TCx l l   , where 

     3 3 3 3 3 3 3cos sin
2 2

TCl x l x l y l
 

        (28) 

 

The value of 3TCy  is 
 

     3 3 3 3 3 3 3sin cos
2 2

TCy y l x l y l
 

         (29) 

 

One can also determine the value of tangent 3Ks  at 

point 3K  . 
 

3
3

2

tan
2  2

K

l
s

R

 
  

 
  (30) 

 

7. Determination of Coordinates of the Missing 

Characteristic Points  

At this stage of procedure aimed at a complete 

solution of the problem it is necessary to search for 

the coordinates of two characteristic points 

occurring in LCS:  3 3 3 , K KK x y  − of the end of 

circular arc CA2 and transition curve TC3, and 

 3 3 3 , O OO x y  − the starting point of curve TC3. It is 

still too early to know the key value which present 

the coordinates of point   , O OO Y X . − of the outset 

of LCS in terms of system 2000. 

Starting from the equation of the tangent to CA2 
 

 

 

' 2

12
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and making use of condition  
'

3 32K KCA
y x s  , it is 

possible to determine 3Kx . 
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From equation (25) it follows that 
 

3 2 2
2

3

1

1
K S
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s
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 (32) 

 

Thus, the length of CA2 projection upon axis x is 
 

2 3 2CA K Kl x x   

 

If the coordinates of point 3K  at the ends of CA2 and 

TC3 are known point  3 3 3 , O OO x y  can be found 

with ease. 
 

3 3 3O K KPx x l    (33) 

3 3 3O K KPy y y    (34) 
 

Taking advantage of equations (26), (27), (33) and 

(34) one can obtain parametric equations for the 

transition curve TC3 in LCS. 
 

       3 3 3 3 3cos sin
2 2

O Ox l x x l x x l y l
 

      (35) 

 

   
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3 3

3 3 3 3sin cos ,      , 0
2 2

O

O

y l y y l

x x l y l l l
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 
   

  (36)  

 

Knowing the coordinates of point  3 3 3 , O OO x y  it is 

not difficult to find the coordinates of point 

  , W WW x y  − the intersection of the main 

directions (Fig. 1), and then the distance of that point 

from the outset of the local system of coordinates. 
 

3 3tan  
2

 

2 tan
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2 2

W WOW x y    (39) 

 

Owing to the above it is possible to determine the 

coordinates of the starting point of LCS in the system 

2000. 
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 (41) 

where: 

1 1 , A B  ̶ parameters of the first main direction 

equation in the system 2000 

1 1( )X A BY   

2 2 , A B  ̶ parameters of the second main direction 

equation in the system 2000 

2 2( )X A B Y   

 , W WY Y  ̶  the coordinates of the intersection point of 

the main directions in the system 2000. 

 

8. Choice of the Design Variant  

If the coordinates of point   , O OO Y X  in terms of 

the system 2000 are known one can make a 

tnsformation of the values measured for LCS by the 

use of equations (1) and (2) for the purpose of 

comparing the existing geometric system with the 

new variant of the run of the route. For the 

assessment of the alternative design, advantage will 

be taken of index      maxy x y x y x    

describing certain variations in the ordinates. 

If the obtained solution is not satisfactory (for the 

reason that, for example, values Δy(x) are too big or 

their distribution along the length of the system is 

disadvantageous), some new values of geometric 

parameters are assumed and by the use of equations 

given in the paper another variant is generated. 

Having determined some coordinates of point 

  , O OO Y X  adequate for the variant it can be 

compared with the measured geometric system. 

On completing the design process, that is, the choice 

of the variant to work on, a transformation of it for 

the system 2000 is made with the aid of equations 

(Korn GA and Korn TM, 1983):  

 

Y = Y0 + x cos  – y(x) sin    (42) 
 

X = X0 + x sin  + y(x) cos   (43) 

 

9. Calculation Example  

The presented algorithm used for the procedure will 

be illustrated by a calculation example relating to the 
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design of the connection of two main directions of a 

railway line by the application of the geometrical 

elements given in Table 1. The turning angle of the 

route is 400, and the planned speed of trains is 110 

km/h.  

Table 1 is provided with a characteristic of the 

designed geometric system. There have been 

assumed values of radii for both the circular arcs and 

the length of arc CA1. Taking advantage of the 

kinematic conditions it was possible to find out the 

superelevation values along arcs and the transition 

curve lengths. The length of arc CA2 is the resultant 

value and concludes the whole geometrical system. 

The values calculated for the characteristic points of 

the railway line (Fig. 1) are presented in Table 2. 

The designed geometrical system is described by the 

following equations: 

  transition curve TC1 0,    75,471x  m 

     1 10,939693  0,34202 x l x l y l   

     1 10,34202  0,939693 y l x l y l  , 0,  80l  m 
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 transition curve TC2 220,593,     269,907x  m 
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Table 1. Characteristic of the designed geometrical system 
Curve TC1 Arc CA1 Curve TC2 Arc CA2 Curve TC3 

clothoid 
1R  = 1200 m curve of class C0  

2R  = 700 m clothoid 

1l  = 80 m 1Rl  = 150 m 2l  = 50 m 2Rl  = 273,275 m 3l  = 130 m 

 
1h  = 70 mm  

2h  = 115 mm  

 

Table 2. Comparison of numerical values for the characteristic points of the route 
Point O 

1K  2O  2K  3K  3O  

Inclination s 0,36397 0,32666 0,19308 0,13500 − 0,26197 − 0,36397 

Abscissa x [m] 0,000 75,471 220,593 269,907 540,946 664,376 

Ordinate y [m] 0,000 26,523 64,079 72,288 55,730 15,085 
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  transition curve TC3 540,946,     664,376x  m 

     3 3664,376 0,939693  0,34202 x l x l y l     
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Fig. 5 presents the designed geometrical system 

using the rectangular coordinate system x, y. It is 

possible to note both main directions. 

 
Fig. 5. Graphic illustration of the designed geometric system y(x)(using a different scale); y1(x), y2(x) − main 

directions of the route 
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10. Summing-up  

The application of mobile satellite measurements 

with the use the antennas installed on a mobile 

carriage travelling on rails, makes it possible to map 

the lay-out of the railtrack axis as far as the absolute 

frame of reference is concerned. This approach 

creates entirely new possibilities in the range of 

geometrical shaping of the rail tracks. Under 

conditions of the ensuring situation there arises the 

necessity to work out some new design methods. 

In this paper a consecutive attempt has been made 

(following papers (Koc, 2011; Koc, 2012a; Koc, 

2012b) to design the area related to the change of the 

railway line direction to comply with the continuous 

satellite measuring technique. This method may turn 

out become particularly useful in the design of axis 

control of the existing track when it is difficult to 

determine both the main directions of the railway 

route. The only solution in that situation is to apply 

two circular arcs of different radii to the geometrical 

system, in other words, to use compound curves.  

The presented concepts of approach to the design of 

the region of the route direction change have led to 

an analytical solution by the use of some 

mathematical formulas, which are most friendly for 

practical applications. The design procedure is 

universal and makes it possible to diversify the type 

and length of the applied transition curves and the 

circular arcs. It should be treated as a generalized 

case of both the symmetric (Koc, 2011; Koc, 2012a) 

and the asymmetric (Koc, 2012b) solution of the 

problem for the reason that a compound curve can 

easily be reduced to a single circular arc of a 

determined radius. 

The effects that follow from the application of the 

design method under consideration have been 

illustrated by a concrete calculation example. In 

order to put the given procedure in practice it will be 

necessary to prepare in the near future some 

appropriate computer-aided design method. 
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