
THE ARCHIVES OF TRANSPORT ISSN (print): 0866-9546

Volume 30, Issue 2, 2014 e-ISSN (online): 2300-8830

 DOI: 10.5604/08669546.1146978

67

BENCHMARKING MINIMUM PASSENGER WAITING TIME IN ONLINE TAXI

DISPATCHING WITH EXACT OFFLINE OPTIMIZATION METHODS

Michał Maciejewski1, 2
1TU Berlin, Faculty of Mechanical Engineering and Transport Systems, Transport Systems

Planning and Transport Telematics (VSP), Berlin, Germany

e-mail: maciejewski@vsp.tu-berlin.de
2Poznan University of Technology, Faculty of Machines and Transport, Division of Transport

Systems, Poznan, Poland

e-mail: michal.maciejewski@put.poznan.pl

Abstract: This paper analyses the use of exact offline optimization methods for benchmarking online taxi

dispatching strategies where the objective is to minimize the total passenger waiting time. First, a general

framework for simulating dynamic transport services in MATSim (Multi-Agent Transport Simulation) is

described. Next, the model of online taxi dispatching is defined, followed by a formulation of the offline

problem as a mixed integer programming problem. Three benchmarks based on the offline problem are

presented and compared to two simple heuristic strategies and a hypothetical simulation with teleportation

of idle taxis. The benchmarks are evaluated and compared using the simulation scenario of taxi services in

the city of Mielec. The obtained (approximate) lower and upper bounds for the minimum total passenger

waiting time indicate directions for further research.

Key words: online taxi dispatching, dynamic vehicle routing, multi-agent simulation, MATSim

1. Introduction

The recent developments in ICT (Information and

Communication Technology) have opened new

opportunities for operating taxi fleets in real time

and aroused interest in the online taxi dispatching

problem. As lots of optimization methods have got

devised over the last decade [1, 3, 6, 7, 10, 12, 13,

14, 15], benchmarking their performance is of the

utmost importance. This pertains to development of

both test scenarios, including simulation platforms,

and reference dispatching strategies, the latter being

the subject of this paper.

Competitive analysis is a popular method used for

assessing the performance of online algorithms

against an optimal offline algorithm, given that the

latter has the full knowledge of the future. However,

this approach is typically applicable only for small,

theoretical instances of online problems, whereas for

real-world cases, one has to assess the performance

experimentally (e.g. through simulation) by

comparing it to that of some selected reference,

although not necessarily optimal, algorithms [4]. In

this paper, exact offline optimization methods are

proposed as benchmarks for online taxi dispatching

strategies where the objective is to minimize the

total passenger waiting time.

The following sections: Simulation platform, Online

taxi dispatching, The Offline Taxi Dispatching

Problem and Test scenario, are revised versions of

respective sections from [8]. The rest of the paper

makes an original contribution to the field.

2. Simulation platform

In order to simulate online taxi dispatching or other

dynamic vehicle routing and scheduling problems, a

dedicated MATSim extension, DVRP, has been

developed [9, 11]. MATSim is an agent-based

system that provides means for microscopic,

activity-based simulation of transport systems

through an iterative process of day-to-day learning

[2]. The DVRP extension allows for modelling a

wide spectrum of dynamic vehicle

routing/scheduling problems by introducing a

simulation framework where:

 each driver is modelled as an agent that follows

his/her dynamic schedule; this is in contrast to the

standard day-to-day learning approach used in

MATSim

Michał Maciejewski

Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline …

68

 a driver’s/vehicle’s schedule is a sequence of tasks

of different types, such as driving from one

location to another or waiting at a given location

 optimization is triggered by events that reflect

changes in the system

 a fleet of vehicles comprises one component of the

whole traffic flow simulated by means of one of

the queue-based simulators available in MATSim

 each vehicle can be monitored online as it moves

from link to link; this information may be used to

update the timing of its schedule and possibly

trigger re-optimization

in the case of passenger transport (e.g. taxi, DRT),

interaction between the dispatcher, drivers and

passengers is simulated in detail, including calling a

ride, picking up/dropping off passengers, etc.

3. Online taxi dispatching

Let {1, , }N n  be the set of taxi requests

(customers). The simulation framework assumes the

following sequence of events related to serving each

request i N (illustrated in Fig. 1 and 2): Taxi

customer i calls a taxi at time call

i (event call

iE)

specifying the pickup location, pi, and the time of

departure, dep call

i i  . The dropoff location, di, is

specified only if requested by the dispatcher

(destination known a priori). For an immediate

request, we have dep call

i i  , whereas for an advance

request, dep call

i i  . At time disp call

i i  , a selected

taxi is dispatched to customer i (event disp

iE) and

reaches location pi at time ready

i . If dep ready

i i  , the

taxi waits for the customer to come; otherwise, if
dep ready

i i  , the customer waits for the taxi to arrive.

The pickup starts at time  pick0 dep readymax ,i i i  

and is represented by event pick0

iE . Once the

customer is picked up (time pick1

i , event pick1

iE),

he/she specifies the destination, di, unless provided

before (destination unknown a priori). Next, the taxi

sets out towards di and after reaching it at time drop0

i

, the dropoff starts (event drop0

iE). Once the

passenger gets out (time drop1

i , event drop1

iE), the

taxicab becomes ready to serve the next request.

At time t, request i N may be in one of the

following four states:

 unplanned – disp pick0 pick1 drop0, , ,i i i i    and drop1

i are

undefined

 planned – disp

it 

 started – disp drop1

i it  

 performed – drop1

it 

Times call

i and dep

i are provided by the customer.

On the other hand, times disp ready pick0 pick1 drop0, , , ,i i i i i    

and drop1

i are estimated until the respective events

take place, and therefore, can change in the course

of simulation. The accuracy of these predictions may

be improved, especially in congested traffic, by the

use of online vehicle tracking.

Let {1, , }M m  be the set of vehicles. Each

vehicle k M is available at location ok from time
curr

ka  onwards, where curr denotes the current

time. Assuming that vehicles neither cruise nor

return to taxi ranks, ok is the destination of the last

customer served by k or k’s home location if the taxi

has not served any request yet. For an idle vehicle k,

we have curr

ka  , otherwise,
ka is the time k

finishes serving its last request. An active vehicle

may have temporarily undefined availability if the

last customer in its schedule, i, has not provided di

on submission (time call). In such cases, both ok and

ak remain unknown until the pickup is finished (time
pick1

i).

Let O(), , ,kit t k M i N  be the time-dependent

travel time from ok to pi, and (), , ,ijt t i N j N  be

the time-dependent travel time from di to pj, both

being functions of departure time t. Let (), ,S

it t i N

be the time-dependent total serve time of customer

i, including picking up, driving and dropping off,

where t is the time when the pickup starts.

AoT Vol. 30/Issue 2 2014

69

Fig. 1. A taxi driver’s schedule and a passenger’s plan (the passenger waits for the taxi)

Fig. 2. A taxi driver’s schedule and a passenger’s plan (the taxi waits for the passenger)

Let L be the list of all open (both unplanned and

planned) requests in N, ordered by dep

iT . Each

request i N is inserted into L on submission, time
call

i , and removed from L on taxi dispatch, time

disp

i . Let AM M be the set of all available

vehicles, i.e. vehicles k M of which ok and ak are

known. Let I AM M be the set of idle vehicles,

i.e. vehicles k M that are waiting for the next

request at ok and available from now on, curr

ka  .

One should note that all collections defined above

change over time and should be written as

functions of time t, e.g. ()N t instead of N.

However, for the sake of readability, a simplified

notation is used, assuming that the values are given

for the current time, curr , for instance,
curr()N N  .

4. The Offline Taxi Dispatching Problem

Let {1, , , 1, , }V m m m n   be the set of

vertices representing both vehicles (each vehicle

k M is represented by vertex k) and requests

(each request i N is represented by vertex m+i).

As in [16], we model the offline problem as an

assignment problem, where the goal is to find cycles

Passenger s
plan

Taxi driver s
schedule

Drive
Drive

(with passenger)
Pickup

time

getting
in

getting
out

Dropoff

Events

waiting riding

Ei
call Ei

disp Ei
dep Ei

pick0 Ei
pick1 Ei

drop0 Ei
drop1

τi
call τi

disp τi
dep τi

pick0 τi
pick1 τi

drop0 τi
drop1

τi
ready

Ei
ready

Michał Maciejewski

Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline …

70

of vertices, represented by variables

, , ,uvx u V v V  and the pickup times, represented

by variables pick0, i Ni  , such that the total waiting

time is minimized. We assume that taxi k remains at

di of the last served request, i, or at ok if it has not

been dispatched yet. Each cycle contains 0r 

vehicle vertices and thus represents r open-ended

routes. The conversion from cycles to routes (list of

vertices) is done by removing all arcs leading to

vehicle vertices, that is , , 1ukx u V k M  . As a

result, we obtain m routes, where route k starts at

vertex k and is served by vehicle k. If route k

contains only vertex k, 1kkx  , vehicle k does not

serve any request, and therefore, stays at ok.

In order to formulate the offline problem as a mixed

integer programming problem, the average

travel/serve times, O

kit , ijt and S

it ,

, , ,N j Ni k M   are used instead of the time-

dependent travel/serve time functions, O()kit t , ()ijt t

and ()S

it t .

The offline taxi dispatching problem may be stated

as:

pick0 depmin i i

i N

 


 (1)

subject to

1 ,uv

u V

x v V


   (2)

1 ,uv

v V

x u V


   (3)

{0,1} , ,uvx u V v V     (4)

pick0 O

,() 0 ,i k ki k m i

k M

a x it N 



     (5)

pick0 pick0 S

,(1) 0

 , ,

j i i ij m i m jt t T x

i N j N

         

   
 (6)

pick0 dep .i i i N    (7)

The objective (1) minimizes the total waiting time of

customers. Constraints (2)–(4) ensure that the

assignment is valid, which means that each vertex is

visited exactly once. Constraints (5) guarantee that

taxicab k arrives at the pickup location of customer i

at time O

k kia t or later, given that i is the first

customer in route k, , 1k m ix   . Constraints (6)

ensure that after picking up customer i, the vehicle

picks up customer j after at least
S

i ijt t , the amount

of time required to serve i and travel from di to pj.

Given that T is large enough, constraints (6) are not

restrictive when , 0, i , m i m jx N j N     .

Additionally, constraints (6) eliminate cycles

without vehicles (subtour elimination constraints).

Constraints (7) ensure that the pickup of customer i

starts at time dep

i or later.

5. Benchmarks

The MIP problem formulated in the previous section

can be used in many different ways to approximate

the minimum waiting time. This section describes

two approaches and opposes them to three other

benchmarks.

Full offline optimization

Given the full knowledge of the future, a complete

(e.g. for a whole day) MIP problem instance is

solved prior to simulation, resulting in an a priori

approximation of the minimum total waiting time.

Next the scenario is simulated using the pre-

computed schedules, which gives an a posteriori

approximation. Since the simulation is not

deterministic (e.g. stochastic travel times), the

timing of the a priori (pre-computed) schedules

(determined using the average travel times) must be

updated on the fly. In general, stochastic travel times

make the a posteriori (simulated) passenger waiting

times larger compared to those of the a priori

solution (reaching pi before dep

i does not reduce the

total waiting times, whereas the opposite does

increase it). This issue could be fixed by repeatedly

re-running the full optimization during simulation in

response to incoming events. This, however, would

imply prohibitively long computation times.

The MIP strategy

This online strategy consists in repeatedly running

re-optimization in response to changes in the system.

As this is considered an online strategy, the future

requests are unknown and only the open ones are

considered in scheduling. The formulation of the

offline problem requires the destination locations to

be provided in advance (i.e. during request

submission).

To ensure that the strategy is responsive under high

load, both the planning horizon and computation

time are limited. The planning horizon is restricted

to the first h requests in L. Whenever a new request

AoT Vol. 30/Issue 2 2014

71

is included into the planning horizon, due to either
call

iE or disp

iE , a respective offline problem is

derived the current state and solved. A detailed

description of this strategy may be found in [8, 10].

Simple heuristic strategies

The proposed benchmarks are compared with two

simple heuristic online strategies, both described

and analyzed in [10].

The first one, NOS (no-scheduling), dispatches the

nearest idle vehicle Ik M to the first request in

the queue. The dispatch is carried out immediately

after call

iE or drop1

iE ; no advance assignments

 disp curr

i  are made. By default, travel time is

used to find the nearest taxi:

I

O

, [1]argmin ()kk L
Mk

tk a



 (8)

The second strategy, RES (re-scheduling),

schedules requests to the closest available taxi
Ak M , regardless of whether idle or busy. The

scheduling, triggered by call

iE or pick1

iE , allows for

both immediate and advance dispatches. By default,

k  is the taxi that arrives earliest at pi:

A

O

, [1]argmin ()k k
M

k L
k

k aa t



  (9)

In general, RES is expected to outperform NOS

owing to a bigger choice set (I AM M), especially

under high load.

Idle vehicle teleportation

By moving idle vehicles towards the pickup

locations of the (near) future requests, the total

waiting time may be significantly reduced, even

down to zero provided that the fleet is large enough.

A good approximation of the lower bound for the

minimum total passenger waiting time can be

obtained by teleporting an idle taxi to a new

customer. In this case, passengers wait only if all

taxis are busy, and waiting requests are served

according to their order in L. Theoretically, since

travel times are time-dependent and stochastic, the

total waiting time obtained with this strategy may be

greater than the minimum total waiting times

without teleporting. This is, however, very unlikely

and in most cases this strategy produces rather over-

optimistic (not tight) lower bounds.

6. Test scenario

The computational experiments were run on a small-

size toy model of the city of Mielec, Poland, with a

population of over 60,000 inhabitants. The demand

comprises of over 56,000 private car trips between

6:00 am and 8:00 pm. The performance of the

dispatching strategies was tested at different levels

of taxi demand, where the set of requests, N,

consisted of n = 406 (1% of all trips), 636 (1.5%),

840 (2%), 1069 (2.5%), 1297 (3%), 1506 (3.5%) and

1719 (4%) randomly selected private car trips, hence

the spatiotemporal distributions of taxi and private

car trips were virtually identical. The set of vehicles,

M, comprised m = 25 taxis.

To obtain reliable travel time estimates for

simulating taxis, first the Mielec scenario was run

without taxis for 20 iterations in order to reach a

state of relaxation. Figures 3 shows a snapshot of the

traffic state in the 20th iteration at 5:00 pm (afternoon

peak hours), whereas Fig. 4 illustrates the resulting

the scale of traffic over time. Next, after changing

the mode of n trips from private car to taxi, which

introduced additional traffic due to the movement of

empty taxis, 5 additional warmup iterations (with the

day-to-day learning switched off) were run to

calculate 5-day averages of travel times. To provide

comparability, this step was carried out

independently for each dispatching setup, since a

different way of dispatching may result in different

travel times, especially for higher shares of taxi trips.

A branch-and-bound (BB) algorithm from the

Gurobi Optimizer [5], version 5.6.2, was used to

solve the offline MIP problem. Each time, first the

initial feasible solution was calculated with RES,

and then BB was run in parallel on all CPU cores.

Based on the findings of [8], the planning horizon in

the MIP strategy was the same as the number of

taxis, h = 25, and the computation time of each

optimization was limited to 60 seconds. For the full

offline optimization, a 2-hour computation limit was

assumed. In both cases, 24-hour travel time averages

were used instead of the default 15-minute averages.

The experiments were run on a computer with the 6-

core Intel Core i7-3930K processor with Hyper-

Threading Technology and 64 GB of RAM.

Michał Maciejewski

Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline …

72

Fig. 3. Simulated traffic in Mielec at 5:00 pm (iteration 20) [10]

Fig. 4. Vehicle departures and arrivals (per 5 minutes) and vehicles en route [10]

0

250

500

750

1000

1250

5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00

N
u

m
b

e
r

o
f

ve
h

ic
le

s

Time

departures

arrivals

en route

AoT Vol. 30/Issue 2 2014

73

7. Computation results

To provide mutual comparability of different

experiments, instead of the total passenger waiting

time, the average passenger waiting time, defined as

 pick0 ep

W

d ,i ii N
T n 


 (10)

is referred to in this section.

Figure 5 presents the obtained average waiting times

for different n and the following configurations:

 offline a priori – complete offline optimization

with 2-hour computation time limit

 offline a posteriori – the results of the full offline

optimization after fitting them into simulation

 MIP – the MIP strategy with the planning horizon

limited to h = 25 taxis and 60-second computation

time limit

 NOS – the no-scheduling strategy

 RES – the re-scheduling strategy; destinations

unknown a priori

 teleportation – a NOS-like naïve strategy; idle

taxis teleported to pickup locations

The results indicate that out of three online

benchmarking strategies, namely NOS, RES and

MIP, the third one performs best. Although the

required a priori knowledge of destinations and long

response times (not a real-time strategy) constrain

the practical applications of MIP, it still may be

successfully used as a yardstick for assessing the

performance of different sophisticated real-time

dispatching strategies.

Running one complete offline optimization before

simulation starts has limited usability. First of all,

the solver could not find the optimum within the

time limit for the medium and high load scenarios

(n > 800), or even improve the initial solution for the

high load scenarios (n > 1200). Secondly, applying

the obtained results in the stochastic simulation,

without any possibility to react (due to long

computation times) causes a significant performance

degradation (especially under higher load where the

schedule is very tight), which is depicted with the

growing gap between offline a priori and offline a

posteriori in Fig. 5.

Fig. 5. Average waiting time, TW, as a function of n

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

400 600 800 1000 1200 1400 1600 1800

T W
[m

in
]

n

offline a priori

offline a posteriori

MIP

NOS

RES

teleportation

Michał Maciejewski

Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline …

74

The results obtained for both the offline a priori and

teleportation options indicate that even at medium

loads (800 1200n ) there are periods with

demand exceeding supply. This undersupply

intensifies as n grows. When teleportation is

enabled, the average waiting time for n = 1719

exceeds 6.5 minutes whereas the average dropoff

trip time is slightly below 5.9 minutes. This

illustrates the scale of undersupply.

8. Conclusion

Out of six different benchmarks, two approaches,

namely MIP and teleportation, are particularly

useful in approximating the upper and lower bounds

for the minimal total passenger waiting time.

Although the former uses dispatching strategy of

limited applicability (due to long computation times)

and the latter is purely hypothetical, both may be

used for evaluating online taxi dispatching

algorithms.

The MIP strategy can be enhanced by incorporating

the knowledge of future requests. This would

probably result in lower waiting times, at least under

low load when the number of open request is usually

lower than the length of the horizon. However, such

a modified MIP strategy could not be used as an

approximation of the upper bound for the optimal

online algorithms.

The analysis of the results obtained for all the

benchmarks indicates that in the case of low load,

when vehicles remain idle for most of the time, any

significant improvement in the total passenger

waiting time is possible only through anticipating

future request and moving idle vehicles towards

them. On the other hand, under high load, the most

important issue is providing the highest possible

throughput, which can be done only by minimizing

the total pickup time, so that more time is spent

effectively on serving customers. However, under

extremely high load, even the complete reduction of

the pickup trip times via teleportation of idle

vehicles would only minimize but not eliminate the

undersupply.

References

[1] Alshamsi A., Abdallah S., Rahwan I.:

Multiagent self-organization for a taxi dispatch

system. In: 8th International Conference on

Autonomous Agents and Multiagent Systems,

pp. 21–28, 2009.

[2] Balmer M., Meister K., Rieser M., Nagel K.,

Axhausen K.: Agent-based simulation of travel

demand: structure and computational

performance of MATSim-T. In: Innovations in

Travel Modeling (ITM) ’08, Portland, Oregon,

June 2008, also VSP WP 08-07, www.vsp.tu-

berlin.de/publications, 2008.

[3] Cheng S., Nguyen T.: Taxisim: a multiagent

simulation platform for evaluating taxi fleet

operations. In: Proceedings of the 2011

IEEE/WIC/ACM International Conferences on

Web Intelligence and Intelligent Agent

Technology, Vol. 2, IEEE Computer Society,

pp. 14–21, 2011.

[4] Groetschel M., Krumke S., Rambau J., Winter

T., Zimmermann U.: Combinatorial online

optimization in real time. Online, 16, pp. 679–

704, 2001.

[5] Gurobi Optimizer Reference Manual, Version

5.6, 2013.

[6] Lee D., Wang H., Cheu R., Teo S.: Taxi

dispatch system based on current demands and

real-time traffic conditions. Transportation

Research Record, Journal of Transportation

Research Board, 1882, pp. 193–200, 2004.

[7] Ma W., Wang K.: On the on-line weighted k-

taxi problem. In: Combinatorics, Algorithms,

Probabilistic and Experimental Methodologies,

Springer, pp. 152–162, 2007.

[8] Maciejewski M.: Online taxi dispatching via

exact offline optimization. Logistyka, 4/2014,

pp. 2133–2142, 2014.

[9] Maciejewski M., Nagel K.: Towards multi-

agent simulation of the dynamic vehicle routing

problem in MATSim. In: Wyrzykowski R.,

Dongarra J., Karczewski K., Wasniewski J.

(eds.): Parallel Processing and Applied

Mathematics, Lecture Notes in Computer

Science, 7204, Springer Berlin Heidelberg, pp.

551–560, 2012.

[10] Maciejewski M., Nagel K.: Simulation and

dynamic optimization of taxi services in

MATSim. VSP Working Paper 13-05, TU

Berlin, Transport Systems Planning and

Transport Telematics. www.vsp.tu-berlin.de/

publications, 2013.

[11] Maciejewski M., Nagel K.: A microscopic

simulation approach for optimization of taxi

services. In: Albrecht T., Jaekel B., Lehnert M.

(eds.): Proceedings of the 3rd International

AoT Vol. 30/Issue 2 2014

75

Conference on Models and Technologies for

Intelligent Transportation Systems, Dresden, p.

1–10, 2013.

[12] Maciejewski M., Nagel K.: The influence of

multi-agent cooperation on the efficiency of taxi

dispatching, In: Wyrzykowski R., Dongarra J.,

Karczewski K., Wasniewski J. (eds.): Parallel

Processing and Applied Mathematics, Lecture

Notes in Computer Science, 8385, Springer

Berlin Heidelberg, p. 751–760, 2014.

[13] Seow K., Dang N., Lee D.: A collaborative

multiagent taxi-dispatch system. IEEE

Transactions on Automation Science and

Engineering, 7(3), pp. 607–616, 2010.

[14] Wang H., Lee D., Cheu R.: PDPTW based taxi

dispatch modeling for booking service. In: Fifth

International Conference on Natural

Computation, ICNC’09, vol. 1, pp. 242–247,

2009.

[15] Wong K. I., Bell M. G. H.: The optimal

dispatching of taxis under congestion: A rolling

horizon approach. Journal of Advanced

Transportation, 40, pp. 203–220, 2006.

[16] Yang J., Jaillet P., Mahmassani H.: Real-time

multivehicle truckload pickup and delivery

problems. Transportation Science, 38(2), pp.

135–148, 2004.

