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Abstract: This paper analyses the use of exact offline optimization methods for benchmarking online taxi 

dispatching strategies where the objective is to minimize the total passenger waiting time. First, a general 

framework for simulating dynamic transport services in MATSim (Multi-Agent Transport Simulation) is 

described. Next, the model of online taxi dispatching is defined, followed by a formulation of the offline 

problem as a mixed integer programming problem. Three benchmarks based on the offline problem are 

presented and compared to two simple heuristic strategies and a hypothetical simulation with teleportation 

of idle taxis. The benchmarks are evaluated and compared using the simulation scenario of taxi services in 

the city of Mielec. The obtained (approximate) lower and upper bounds for the minimum total passenger 

waiting time indicate directions for further research. 
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1. Introduction 

The recent developments in ICT (Information and 

Communication Technology) have opened new 

opportunities for operating taxi fleets in real time 

and aroused interest in the online taxi dispatching 

problem. As lots of optimization methods have got 

devised over the last decade [1, 3, 6, 7, 10, 12, 13, 

14, 15], benchmarking their performance is of the 

utmost importance. This pertains to development of 

both test scenarios, including simulation platforms, 

and reference dispatching strategies, the latter being 

the subject of this paper. 

Competitive analysis is a popular method used for 

assessing the performance of online algorithms 

against an optimal offline algorithm, given that the 

latter has the full knowledge of the future. However, 

this approach is typically applicable only for small, 

theoretical instances of online problems, whereas for 

real-world cases, one has to assess the performance 

experimentally (e.g. through simulation) by 

comparing it to that of some selected reference, 

although not necessarily optimal, algorithms [4]. In 

this paper, exact offline optimization methods are 

proposed as benchmarks for online taxi dispatching 

strategies where the objective is to minimize the 

total passenger waiting time. 

The following sections: Simulation platform, Online 

taxi dispatching, The Offline Taxi Dispatching 

Problem and Test scenario, are revised versions of 

respective sections from [8]. The rest of the paper 

makes an original contribution to the field. 

 

2. Simulation platform 

In order to simulate online taxi dispatching or other 

dynamic vehicle routing and scheduling problems, a 

dedicated MATSim extension, DVRP, has been 

developed [9, 11]. MATSim is an agent-based 

system that provides means for microscopic, 

activity-based simulation of transport systems 

through an iterative process of day-to-day learning 

[2]. The DVRP extension allows for modelling a 

wide spectrum of dynamic vehicle 

routing/scheduling problems by introducing a 

simulation framework where: 

 each driver is modelled as an agent that follows 

his/her dynamic schedule; this is in contrast to the 

standard day-to-day learning approach used in 

MATSim 
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 a driver’s/vehicle’s schedule is a sequence of tasks 

of different types, such as driving from one 

location to another or waiting at a given location 

 optimization is triggered by events that reflect 

changes in the system 

 a fleet of vehicles comprises one component of the 

whole traffic flow simulated by means of one of 

the queue-based simulators available in MATSim 

 each vehicle can be monitored online as it moves 

from link to link; this information may be used to 

update the timing of its schedule and possibly 

trigger re-optimization 

in the case of passenger transport (e.g. taxi, DRT), 

interaction between the dispatcher, drivers and 

passengers is simulated in detail, including calling a 

ride, picking up/dropping off passengers, etc. 

 
3. Online taxi dispatching 

Let {1, , }N n   be the set of taxi requests 

(customers). The simulation framework assumes the 

following sequence of events related to serving each 

request i N  (illustrated in Fig. 1 and 2): Taxi 

customer i calls a taxi at time call

i  (event call

iE ) 

specifying the pickup location, pi, and the time of 

departure, dep call

i i  . The dropoff location, di, is 

specified only if requested by the dispatcher 

(destination known a priori). For an immediate 

request, we have dep call

i i  , whereas for an advance 

request, dep call

i i  . At time disp call

i i  , a selected 

taxi is dispatched to customer i (event disp

iE ) and 

reaches location pi at time ready

i . If dep ready

i i  , the 

taxi waits for the customer to come; otherwise, if 
dep ready

i i  , the customer waits for the taxi to arrive. 

The pickup starts at time  pick0 dep readymax ,i i i    

and is represented by event pick0

iE . Once the 

customer is picked up (time pick1

i , event pick1

iE ), 

he/she specifies the destination, di, unless provided 

before (destination unknown a priori). Next, the taxi 

sets out towards di and after reaching it at time drop0

i

, the dropoff starts (event drop0

iE ). Once the 

passenger gets out (time drop1

i , event drop1

iE ), the 

taxicab becomes ready to serve the next request. 

At time t, request i N  may be in one of the 

following four states: 

 unplanned – disp pick0 pick1 drop0, , ,i i i i     and drop1

i are 

undefined 

 planned – disp

it   

 started – disp drop1

i it    

 performed – drop1

it   

Times call

i  and dep

i  are provided by the customer. 

On the other hand, times disp ready pick0 pick1 drop0, , , ,i i i i i      

and drop1

i  are estimated until the respective events 

take place, and therefore, can change in the course 

of simulation. The accuracy of these predictions may 

be improved, especially in congested traffic, by the 

use of online vehicle tracking. 

Let {1, , }M m   be the set of vehicles. Each 

vehicle k M  is available at location ok from time 
curr

ka   onwards, where curr  denotes the current 

time. Assuming that vehicles neither cruise nor 

return to taxi ranks, ok is the destination of the last 

customer served by k or k’s home location if the taxi 

has not served any request yet. For an idle vehicle k, 

we have curr

ka  , otherwise, 
ka  is the time k 

finishes serving its last request. An active vehicle 

may have temporarily undefined availability if the 

last customer in its schedule, i, has not provided di 

on submission (time call ). In such cases, both ok and 

ak remain unknown until the pickup is finished (time 
pick1

i ). 

Let O( ),  ,  ,kit t k M i N   be the time-dependent 

travel time from ok to pi, and ( ),  ,  ,ijt t i N j N   be 

the time-dependent travel time from di to pj, both 

being functions of departure time t. Let ( ),  ,S

it t i N  

be the time-dependent total serve time of customer 

i, including picking up, driving and dropping off, 

where t is the time when the pickup starts. 
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Fig. 1. A taxi driver’s schedule and a passenger’s plan (the passenger waits for the taxi) 

 
Fig. 2. A taxi driver’s schedule and a passenger’s plan (the taxi waits for the passenger) 

 

Let L be the list of all open (both unplanned and 

planned) requests in N, ordered by dep

iT . Each 

request i N  is inserted into L on submission, time 
call

i , and removed from L on taxi dispatch, time 

disp

i . Let AM M  be the set of all available 

vehicles, i.e. vehicles k M of which ok and ak are 

known. Let I AM M  be the set of idle vehicles, 

i.e. vehicles k M  that are waiting for the next 

request at ok and available from now on, curr

ka  . 

One should note that all collections defined above 

change over time and should be written as 

functions of time t, e.g. ( )N t  instead of N. 

However, for the sake of readability, a simplified 

notation is used, assuming that the values are given 

for the current time, curr , for instance, 
curr( )N N  . 

 

4. The Offline Taxi Dispatching Problem 

Let {1, , , 1, , }V m m m n    be the set of 

vertices representing both vehicles (each vehicle 

k M  is represented by vertex k) and requests 

(each request i N  is represented by vertex m+i). 

As in [16], we model the offline problem as an 

assignment problem, where the goal is to find cycles 
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of vertices, represented by variables 

,  ,  ,uvx u V v V   and the pickup times, represented 

by variables pick0,  i Ni  , such that the total waiting 

time is minimized. We assume that taxi k remains at 

di of the last served request, i, or at ok if it has not 

been dispatched yet. Each cycle contains 0r   

vehicle vertices and thus represents r open-ended 

routes. The conversion from cycles to routes (list of 

vertices) is done by removing all arcs leading to 

vehicle vertices, that is ,  ,  1ukx u V k M  . As a 

result, we obtain m routes, where route k starts at 

vertex k and is served by vehicle k. If route k 

contains only vertex k, 1kkx  , vehicle k does not 

serve any request, and therefore, stays at ok. 

In order to formulate the offline problem as a mixed 

integer programming problem, the average 

travel/serve times, O

kit , ijt  and S

it , 

,  ,  ,N j Ni k M    are used instead of the time-

dependent travel/serve time functions, O( )kit t , ( )ijt t  

and ( )S

it t .  

The offline taxi dispatching problem may be stated 

as: 

pick0 depmin i i

i N

 


  (1) 

subject to 

1     ,uv

u V

x v V


    (2) 

1     ,uv

v V

x u V


    (3) 

{0,1}     , ,uvx u V v V      (4) 

pick0 O

,( ) 0     ,i k ki k m i

k M

a x it N 



      (5) 

pick0 pick0 S

,(1 ) 0

                                                 , ,

j i i ij m i m jt t T x

i N j N

         

   
 (6) 

pick0 dep      .i i i N     (7) 

The objective (1) minimizes the total waiting time of 

customers. Constraints (2)–(4) ensure that the 

assignment is valid, which means that each vertex is 

visited exactly once. Constraints (5) guarantee that 

taxicab k arrives at the pickup location of customer i 

at time O

k kia t  or later, given that i is the first 

customer in route k, , 1k m ix   . Constraints (6) 

ensure that after picking up customer i, the vehicle 

picks up customer j after at least 
S

i ijt t , the amount 

of time required to serve i and travel from di to pj. 

Given that T is large enough, constraints (6) are not 

restrictive when , 0,  i ,  m i m jx N j N     . 

Additionally, constraints (6) eliminate cycles 

without vehicles (subtour elimination constraints). 

Constraints (7) ensure that the pickup of customer i 

starts at time dep

i  or later. 

 

5. Benchmarks 

The MIP problem formulated in the previous section 

can be used in many different ways to approximate 

the minimum waiting time. This section describes 

two approaches and opposes them to three other 

benchmarks. 

Full offline optimization 

Given the full knowledge of the future, a complete 

(e.g. for a whole day) MIP problem instance is 

solved prior to simulation, resulting in an a priori 

approximation of the minimum total waiting time. 

Next the scenario is simulated using the pre-

computed schedules, which gives an a posteriori 

approximation. Since the simulation is not 

deterministic (e.g. stochastic travel times), the 

timing of the a priori (pre-computed) schedules 

(determined using the average travel times) must be 

updated on the fly. In general, stochastic travel times 

make the a posteriori (simulated) passenger waiting 

times larger compared to those of the a priori 

solution (reaching pi before dep

i  does not reduce the 

total waiting times, whereas the opposite does 

increase it). This issue could be fixed by repeatedly 

re-running the full optimization during simulation in 

response to incoming events. This, however, would 

imply prohibitively long computation times. 

The MIP strategy 

This online strategy consists in repeatedly running 

re-optimization in response to changes in the system. 

As this is considered an online strategy, the future 

requests are unknown and only the open ones are 

considered in scheduling. The formulation of the 

offline problem requires the destination locations to 

be provided in advance (i.e. during request 

submission). 

To ensure that the strategy is responsive under high 

load, both the planning horizon and computation 

time are limited. The planning horizon is restricted 

to the first h requests in L. Whenever a new request 
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is included into the planning horizon, due to either 
call

iE  or disp

iE , a respective offline problem is 

derived the current state and solved. A detailed 

description of this strategy may be found in [8, 10]. 

Simple heuristic strategies 

The proposed benchmarks are compared with two 

simple heuristic online strategies, both described 

and analyzed in [10]. 

The first one, NOS (no-scheduling), dispatches the 

nearest idle vehicle Ik M  to the first request in 

the queue. The dispatch is carried out immediately 

after call

iE  or drop1

iE ; no advance assignments 

 disp curr

i   are made. By default, travel time is 

used to find the nearest taxi: 

I

O

, [1]argmin ( )kk L
Mk

tk a



  (8) 

The second strategy, RES (re-scheduling), 

schedules requests to the closest available taxi 
Ak M , regardless of whether idle or busy. The 

scheduling, triggered by call

iE  or pick1

iE , allows for 

both immediate and advance dispatches. By default, 

k   is the taxi that arrives earliest at pi: 

A

O

, [1]argmin ( )k k
M

k L
k

k aa t



   (9) 

In general, RES is expected to outperform NOS 

owing to a bigger choice set ( I AM M ), especially 

under high load. 

Idle vehicle teleportation 

By moving idle vehicles towards the pickup 

locations of the (near) future requests, the total 

waiting time may be significantly reduced, even 

down to zero provided that the fleet is large enough. 

A good approximation of the lower bound for the 

minimum total passenger waiting time can be 

obtained by teleporting an idle taxi to a new 

customer. In this case, passengers wait only if all 

taxis are busy, and waiting requests are served 

according to their order in L. Theoretically, since 

travel times are time-dependent and stochastic, the 

total waiting time obtained with this strategy may be 

greater than the minimum total waiting times 

without teleporting. This is, however, very unlikely 

and in most cases this strategy produces rather over-

optimistic (not tight) lower bounds. 

6. Test scenario 

The computational experiments were run on a small-

size toy model of the city of Mielec, Poland, with a 

population of over 60,000 inhabitants. The demand 

comprises of over 56,000 private car trips between 

6:00 am and 8:00 pm. The performance of the 

dispatching strategies was tested at different levels 

of taxi demand, where the set of requests, N, 

consisted of n = 406 (1% of all trips), 636 (1.5%), 

840 (2%), 1069 (2.5%), 1297 (3%), 1506 (3.5%) and 

1719 (4%) randomly selected private car trips, hence 

the spatiotemporal distributions of taxi and private 

car trips were virtually identical. The set of vehicles, 

M, comprised m = 25 taxis. 

To obtain reliable travel time estimates for 

simulating taxis, first the Mielec scenario was run 

without taxis for 20 iterations in order to reach a 

state of relaxation. Figures 3 shows a snapshot of the 

traffic state in the 20th iteration at 5:00 pm (afternoon 

peak hours), whereas Fig. 4 illustrates the resulting 

the scale of traffic over time. Next, after changing 

the mode of n trips from private car to taxi, which 

introduced additional traffic due to the movement of 

empty taxis, 5 additional warmup iterations (with the 

day-to-day learning switched off) were run to 

calculate 5-day averages of travel times. To provide 

comparability, this step was carried out 

independently for each dispatching setup, since a 

different way of dispatching may result in different 

travel times, especially for higher shares of taxi trips. 

A branch-and-bound (BB) algorithm from the 

Gurobi Optimizer [5], version 5.6.2, was used to 

solve the offline MIP problem. Each time, first the 

initial feasible solution was calculated with RES, 

and then BB was run in parallel on all CPU cores. 

Based on the findings of [8], the planning horizon in 

the MIP strategy was the same as the number of 

taxis, h = 25, and the computation time of each 

optimization was limited to 60 seconds. For the full 

offline optimization, a 2-hour computation limit was 

assumed. In both cases, 24-hour travel time averages 

were used instead of the default 15-minute averages. 

The experiments were run on a computer with the 6-

core Intel Core i7-3930K processor with Hyper-

Threading Technology and 64 GB of RAM.  
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Fig. 3. Simulated traffic in Mielec at 5:00 pm (iteration 20) [10] 

 

 
Fig. 4. Vehicle departures and arrivals (per 5 minutes) and vehicles en route [10] 
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7. Computation results 

To provide mutual comparability of different 

experiments, instead of the total passenger waiting 

time, the average passenger waiting time, defined as 

 pick0 ep

W

d ,i ii N
T n 


  (10) 

is referred to in this section. 

Figure 5 presents the obtained average waiting times 

for different n and the following configurations: 

 offline a priori – complete offline optimization 

with 2-hour computation time limit 

 offline a posteriori – the results of the full offline 

optimization after fitting them into simulation 

 MIP – the MIP strategy with the planning horizon 

limited to h = 25 taxis and 60-second computation 

time limit 

 NOS – the no-scheduling strategy 

 RES – the re-scheduling strategy; destinations 

unknown a priori 

 teleportation – a NOS-like naïve strategy; idle 

taxis teleported to pickup locations 

The results indicate that out of three online 

benchmarking strategies, namely NOS, RES and 

MIP, the third one performs best. Although the 

required a priori knowledge of destinations and long 

response times (not a real-time strategy) constrain 

the practical applications of MIP, it still may be 

successfully used as a yardstick for assessing the 

performance of different sophisticated real-time 

dispatching strategies. 

Running one complete offline optimization before 

simulation starts has limited usability. First of all, 

the solver could not find the optimum within the 

time limit for the medium and high load scenarios 

(n > 800), or even improve the initial solution for the 

high load scenarios (n > 1200). Secondly, applying 

the obtained results in the stochastic simulation, 

without any possibility to react (due to long 

computation times) causes a significant performance 

degradation (especially under higher load where the 

schedule is very tight), which is depicted with the 

growing gap between offline a priori and offline a 

posteriori in Fig. 5. 

 

 

 
Fig. 5. Average waiting time, TW, as a function of n 
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The results obtained for both the offline a priori and 

teleportation options indicate that even at medium 

loads ( 800 1200n  ) there are periods with 

demand exceeding supply. This undersupply 

intensifies as n grows. When teleportation is 

enabled, the average waiting time for n = 1719 

exceeds 6.5 minutes whereas the average dropoff 

trip time is slightly below 5.9 minutes. This 

illustrates the scale of undersupply. 

 

8. Conclusion 

Out of six different benchmarks, two approaches, 

namely MIP and teleportation, are particularly 

useful in approximating the upper and lower bounds 

for the minimal total passenger waiting time. 

Although the former uses dispatching strategy of 

limited applicability (due to long computation times) 

and the latter is purely hypothetical, both may be 

used for evaluating online taxi dispatching 

algorithms. 

The MIP strategy can be enhanced by incorporating 

the knowledge of future requests. This would 

probably result in lower waiting times, at least under 

low load when the number of open request is usually 

lower than the length of the horizon. However, such 

a modified MIP strategy could not be used as an 

approximation of the upper bound for the optimal 

online algorithms. 

The analysis of the results obtained for all the 

benchmarks indicates that in the case of low load, 

when vehicles remain idle for most of the time, any 

significant improvement in the total passenger 

waiting time is possible only through anticipating 

future request and moving idle vehicles towards 

them. On the other hand, under high load, the most 

important issue is providing the highest possible 

throughput, which can be done only by minimizing 

the total pickup time, so that more time is spent 

effectively on serving customers. However, under 

extremely high load, even the complete reduction of 

the pickup trip times via teleportation of idle 

vehicles would only minimize but not eliminate the 

undersupply. 
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