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Abstract: In this paper we propose estimation procedure in which traffic flows resulting from rerouting 

model are matched with traffic flows observed during unexpected events. We show practical value of 

observing a entire cut-set of the transportation network and propose theoretical closed-form formulation of 

estimation problem for the rerouting model. We apply proposed framework on field-data from Warsaw 

bridges to observe rerouting phenomena. Most importantly we observed that: a) around 20% of affected 

traffic flow reroutes, b) rerouting flows are increasing in time, c) drivers show strategic capabilities, d) and 

maximize their utility while rerouting. All of the which were hypothesized in Information Comply Model 

(Kucharski et. al., 2014) and are now supported with field observations. 
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1. Introduction 

Our aim is to model rerouting phenomena so that 

resulting traffic flows are matched with what is 

observed during unexpected events. By rerouting 

we mean changing the currently chosen path after 

either receiving some information or observing 

consequences of an unexpected traffic event. In this 

paper we model rerouting with the Information 

Comply Model (ICM – (Kucharski et. al., 2014)), 

which models the phenomena through calculating 

probability of rerouting for given place and time in 

the network subject to current situation and 

information. ICM is parameterized with: a) how 

information reaches drivers, b) how do they react 

and c) how do they choose their new routes, which 

all influence the resulting probability. Detailed 

representation of ICM model yields realistic results 

as it covers cognitive process of rerouting, 

unfortunately it is hard to estimate and validate. 

ICM models the probability of rerouting at each 

point in space and time which itself is latent and 

cannot be observed directly, yet the aggregated 

outcomes of those decisions can be observed by 

looking at traffic flows. 

Previously proposed framework (Kucharski, et. al, 

2014a) in which ICM model was estimated with 

direct observations of paths is here redefined to 

work with indirect observations of traffic flows. In 

the first part we propose theoretical framework on 

how traffic flows in case of events can be analysed. 

We come up with a well-founded framework for 

proposed estimation. In the second part we apply 

this framework to the field-data. We look at the 

traffic flows crossing Wisła river in Warsaw, 

Poland, to see how it changes in case when one of 

the bridges is blocked. Though the additional input 

needed for estimation (real-time dynamic traffic 

assignment model) was not available, we have 

managed to obtain rough estimates of the most 

important characteristics of the rerouting 

phenomena, namely: a) total volume of rerouting 

vehicles, b) time of rerouting, c) new route choice 

pattern. Which are a reasonable starting point for 

further estimation of ICM model. 

 

2. Background 

Both travel times and traffic flows can vary 

significantly due to unexpected events. An 

unexpected event affects both the supply side and 

the demand side. The supply side is affected not 

only at the place of event i.e. via reduced capacity, 

speed, closure, but it also propagates to upstream 

part of the network causing delays and spillback. 

Modelling effect on the supply side is relatively 

straightforward subject to fixed demand pattern 

(Corthout et al., 2009) and can provide valuable 

information on potential effects that event can 

cause. 
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The more complicated phenomena due to events 

take place at the demand side, when drivers react to 

the events. We call such reaction rerouting - 

changing the currently chosen path after either 

receiving some information or observing 

consequences of a traffic event (similar can be 

called: en-route rerouting (Snowdon et al., 2012), 

or adaptation (Gao et al., 2008)). Indeed, when the 

forecasted performance pattern of travel times and 

costs, known or only perceived, changes 

significantly, drivers may react by shifting their 

current route to a better one. The representation of 

such situations is particularly challenging if the 

information reaches a driver who is already 

travelling toward the destination. It is important to 

stress that we address rerouting not in terms of pre-

trip route choices (referred as route swapping), but 

mainly en-route rerouting which takes place while 

travelling through the network. Recently we 

proposed ICM model to address the rerouting 

phenomena in Dynamic Traffic Assignment. 

In this paper we follow classical definition of road 

network represented by means of an oriented graph 

G(N, A), where N is the set of nodes and A  N×N 

is the set of arcs. Each arc aA is described 

through a vector of characteristics a() that allow 

to represent its performances. Such network is the 

input of DTA procedure providing state of the 

network represented with: a) time-varying traffic 

flows qa(τ)  on the network arcs and their 

cumulatives 
0

( ) ( )a aQ q d



    , b) time-varying 

travel times resulting from the traffic flows ( )at  . 

 

3. Observing rerouting phenomena 

In this section we define the input of the procedure 

and derive desired characteristics. Traffic network 

G is observed through measuring the traffic flows 

qa(τ) at some observed arcs Aobs⊆A. In practice, 

continuous observation of traffic flow is discretized 

and aggregated to a given time discretization as in 

(1), in this paper we work with traffic flows 

aggregated to hourly values. 

1

( ) ( )

H

a a

H

q H q d 


   (1) 

Network is observed over several consecutive days 

and we further denote D

aq  as the daily traffic flow 

profile observed during day D and the long-term 

observation over set of observed days Dobs is 

represented through a set of daily profiles

 :D

a a D  obsq q D . Within observed days Dobs 

let’s specify the subset of typical days Dtypical , that 

is the days for which nothing atypical (events, 

excessive demand, severe weather, road closures 

etc.) took place. From observations of typical days 

 :typical D

a a D  typicalq q D we can see if day-to-day 

fluctuations are significant. Although there is 

number of procedures in literature to obtain the 

mean traffic flow and its variance (for reference see 

Hranac, et. al 2012), here we apply simplified 

Student’s t-statistics and define the confidence 

interval as in (2), where  ( )typical

aq   is the 

observed standard deviation of flows at arc a at 

time τ on set of typical days. t statistics are taken 

for 1typicalD  degrees of freedom, in field-data we 

obtained fit at α level of 90%. 

 
max

1 /2, 1

( )
( )

1
typical

typical

a

a D

typical

q
t

D


 
 

 



  (2) 

If observed values for the typical days are within 

the confidence interval max( ( )) ( )typical

a aE q     we 

can assume that there is a typical traffic flow 

profile ˆ ( ) ( ( ))typical

a aq E q  at arc a during typical 

day.  

We propose to further decompose single day 

observed flow ( )aq  of an arc for which there is a 

typical profile and define it as a mixture of typical 

ˆ ( )aq  and extra parts of flow ( )a  , as defined in 

(3). We can say that observation of arc a is typical 

as long as max( ) ( )a a    and it becomes atypical 

otherwise. We further denote atypical flow ( )aq   

and measure it with extra flow ( )a  . For atypical 

observation we define the time instant e

a


at which 

the flows starts falling out of confidence interval 

and e

a


at which it becomes typical again, we 

further define impact period e

a with (4).  

ˆ( ) ( ) ( )a a aq q      (3) 

max, : ( ) ( )e e e e

a a a a a a        
 

     (4)  
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( ) ( )
e
a

a aE d





   


   (5) 

To measure the atypical flows we will cumulate the 

event impact through (5) and define the total 

impact with total extra flow ( )e

a aE 


. In the 

remainder of the analysis we assume that traffic 

flow profile outside of impact period e

a is typical 

ˆ ( )aq  , thanks to this we can restrict analysis to e

a  

and use ( ) 0 : e

a a     to isolate impact from 

random traffic fluctuations not related to the event. 

In this framework we propose to define an arc 

impacted by event as an arc for which flows are 

atypical for some impacted period e

a . We can 

further extend this definition by looking at profile 

of ( )aE   and distinguishing several cases for 

impacted arcs: 

a) negatively influenced arc, for which

( ) 0e

a aE 


 ; 

b) positively influenced arc, for which

( ) 0e

a aE 


 ; 

c) neutrally impacted arc, for which ( ) 0e

a aE 


 ; 

By definition we can say that for impacted arcs 

there is strict relation between E and Q, so that the 

total traffic flow of impacted arc over the impacted 

period is: 

a) ˆ( ) ( )e e

a a a aQ Q 
 

 if ( ) 0e

a aE 


 ; 

b) ˆ( ) ( )e e

a a a aQ Q 
 

 if ( ) 0e

a aE 


 ; 

c) ˆ( ) ( )e e

a a a aQ Q 
 

 if ( ) 0e

a aE 


 ; 

The negatively impacted arc can be seen as an arc 

for which the traffic conditions has been worsened 

due to event e so that cumulated flow was lower 

than typically as the traffic flows shifted to 

positively impacted arcs for which the cumulated 

flow was greater than typically. The special case 

arises for impacted arcs for which there is an 

impact, but the cumulated flow remains typical. In 

this case only the profile of flow qa(τ) has changed, 

resulting in negative ( )a  in the first, building, 

phase and positive ( )a  in the second, unloading, 

phase. For this case we can define middle point at 

which a building-phase becomes an unloading-

phase. If the E of building-phase equals to E of 

unloading phase it means that arc is neutrally 

impacted, and rerouting phenomena is not 

observed. Empirically it would correspond to the 

case when event causes some impact (i.e. slows 

down the traffic), but it doesn’t alter the route-

choice model, no-one waiting in queue decides to 

reroute.  

Mind that e

a  is defined separately for each arc a 

and is not unique for the whole network, thanks to 

this we can observe the temporal dimension of the 

rerouting phenomena. For the negatively impacted 

arcs we assume that e

a


is the time instant at which 

backward wave (Lighthill, et al. 1955) propagated 

from the place of event e reaches arc a, i.e. a 

moment at which the queue caused by event e 

reaches arc a. So that ( , )e e

a w e a 


   where τe 

is the time of the event and ( , )w e a is the wave 

propagation time from arc of the event e to arc a. 

( , )w e a  can be straightforwardly derived from the 

traffic flow model, i.e. (Gentile, 2010). The 

beginning of impact time for negatively impacted 

arcs results from the phenomena taking place at the 

supply side, mainly queue formation. On contrary 

the impact period at positively impacted arcs arises 

from rerouting phenomena, i.e. the drivers who 

decide to shift their routes from the negatively 

impacted arcs to positively impacted arcs. 

 

4. Cut-set observation 

Based on the above general considerations of 

traffic flows observed in atypical days, we focus 

our considerations on specific case of screenline 

observation which, as we will show later is 

valuable to estimate rerouting phenomena. We 

observe the subset of observed arcs Aobs⊆A being 

cut-set of the graph dividing the network into two 

subgraphs, such that for each od pair with origin 

laying in one subgraph and destination in another 

there is no path connecting o with d which does not 

contain at least one arc of the cut-set. Practically 

such cut-set is obtained by looking at screenline of 

some linear barrier, i.e. railway line, motorway, or 

river; in our dataset we looked at the river and cut 

the network into left- and east-bank subgraphs. 

Thanks to this we are sure that we observe the total 

traffic crossing the river. Moreover, for clarity, we 

analysed the event which took place at the cut-set, 

so that we directly observe the event arc e for 
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which the event took place. Time of the event is 

then directly observed and, as ( , ) 0w e a  , it 

coincides with beginning of impact period at event 

arc e (which is, by the way, the only negatively 

impacted observed arc). If so, we can say that the 

total rerouting flow R coincides with the total extra 

flow of event arc, ( )e

e aE 


 .  

The quantity of rerouting phenomena defined 

through R results from sum of all rerouting 

decisions made by drivers throughout the space 

(network arcs aA) and time (τ) represented with 

ra(τ) – which is the central variable of rerouting 

model. We can satisfactorily define the rerouting 

phenomena through determining ra(τ), which , 

unfortunately, is not observed directly and can only 

be approximated, as we show below. First 

approximation of R can be derived from E of 

negatively impacted arc as in (6). But we shall 

check whether flow conservation (7) holds true. If 

so it means that total flow crossing the cut-set is 

conserved, i.e. total extra flow on all positively 

impacted observed arcs is equal to extra flow on 

negatively impacted observed arcs. Which means 

that the whole impacted flow has shifted to 

observed arcs, so that R can be appropriately 

calculated with (6). Otherwise it means that some 

part of impacted flow has resigned from the trip 

and didn’t cross the cut-set at all. In such case it is 

better to define the total rerouting R through (8) 

which sums ε only for positively impacted arcs.  

( ) ( )

e
a

e
a

e

a e a

a A

R r E





 







     (6) 

\{ }

( ) ( )
obs

e e

e e a a

a A e

E E 
 



    (7) 

\{ }

( ) ( )

e
a

e
obs

a

e

a a a

a A a A e

R r E





 





 

    (8) 

  ( )
obs

o

a a

o A

r r 


   (9) 

 ( ) ( , )o

o a

a A

r t a o  


   (10) 

We can further say that unobserved rerouting flows 

ra(τ) can be indirectly observed at o∊Aobs  through 

( )o   as in equation (10). In this formula we shift 

the decisions made by individuals through ra(τ) 

back in time when they were made, ( , )t a o  before 

observing the flow at observed arc. For this end we 

use departure time from arc a to arrive at observed 

arc o at time τ  which equals τ – ( , )t a o , and is 

direct result of traffic flow model. We also use 

( )o

ar  being the decomposition of rerouting flow 

ra(τ)  per observed arcs o⊆Aobs, as in (9),  i.e. part 

of rerouting flow at choosing to cross cut-set at 

alternative arc o 

 

5. Estimating rerouting phenomena 

Using the above framework we can define 

estimation problem of rerouting phenomena.  The 

problem is solved through searching rerouting 

flows ra(τ) in space a and time τ with (10). This 

problem can be paraphrased as a problem of 

finding unknown rerouting flows 
( )o

ar 
 which will 

sum up to observed extra flows at the observed cut-

set, or more technically: find 
( )o

ar 
 so that for each 

observed arc 
 ( ) ( , )o

o a

a A

r t a o  


  . Which is 

a very underdetermined problem and should be 

further constrained. The constrains should include: 

a) at the supply side, the traffic flow theory to 

determine travel times Δt; b) characteristics of 

rerouting phenomena (reaction of drivers to 

unexpected events). Therefore in the following 

section ra(τ) is defined through the ICM model. We 

also provide background on how travel times 

( , )t a o
 and traffic flows qa(τ) are obtained and 

linked through Dynamic Traffic Assignment. 

 

6. Dynamic Traffic Assignment 

Before we can introduce the ICM model we need to 

provide a brief introduction to DTA. In general, 

DTA determines the traffic flows on the network 

satisfying the demand (Cascetta, 2009). It is done 

through an assignment methods, typically 

following the ‘user-equilibrium’ concept of 

balancing travel costs of all drivers (Wardrop, 

1952). In dynamic context ‘user-equilibrium’ 

becomes a dynamic user equilibrium (DUE), 

defined as a traffic pattern at which no driver finds 

it convenient to (unilaterally) change his/her route 

and departure time (see i.e. Friesz et. al, 2000). 

DUE is obtained through an iterative process where 

every iteration route choices are adjusted based on 

outcomes of decisions made in previous iterations. 

The process is converging to a fixed-point, where 

demand and supply are stabilized (Banach, 1922). 
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The results of DTA are the network performances 

(i.e. temporal profile of travel costs and times) and 

the demand pattern. Demand pattern of DTA is 

either explicit set of od paths defined with specific 

temporal profile of flows, or, alternatively, 

(Meschini et al., 1999) set of implicit, local routing 

decisions (arc conditional probabilities) denoted as 

( )d

ap 
, defined for each node which coupled with 

origin demand becomes equivalent to explicit 

paths. Implicit representation through local 

decisions is way more convenient for modeling 

rerouting phenomena. In particular we introduce 

two demand patterns (obtained through a route 

choice model (RCM)); one calculated with typical 

travel costs and times:
ˆˆ ˆ( ) ( , )d

ap RCM c t 
 and one 

calculated using actual (atypical) costs and times:

( ) ( , )d

ap RCM c t 
. By typical costs (denoted 

throughout the paper with superscript ^) we mean 

conditions observed during a typical day (when no 

unexpected events are present), which coincide 

with costs and times of dynamic user equilibrium 

and are, at the same time, the conditions expected 

by individuals to occur when making route choices. 

Actual (atypical) conditions (denoted throughout 

the paper with superscript ~) in turn are those 

observed as a consequence of unexpected event. 

Actual (atypical) travel times and costs are used by 

individual to choose a new path to avoid 

consequences of unexpected event. The outcomes 

of DTA are travel costs and flows of the network 

obtained through equilibrium for typical case. 

 

7. ICM model 

ICM rerouting model provides the same outcomes 

as DTA, yet for atypical situation of unexpected 

event, i.e. it provides atypical flows ( )aq 

including extra flow ( )a  .This section briefly 

summarizes information comply model (ICM) 

proposed in (Kucharski et al. 2014a). Here we 

provide only essential information about ICM 

model needed to understand how rerouting 

phenomena is modelled and what is the meaning of 

parameters. 

ICM models probability of individual to reroute 

( )d

i  for each point in time τ and space i based on 

current situation and destination d. It is designed to 

resemble reasoning process made by each 

individual who is represented through three sub 

models:  

 information model ( )d

  , telling if individual has 

received information about the event, 

 observation model ( )d

io  , telling if individual has 

observed atypical situation and linked it with the 

event, and: 

 compliance model ( )d

i  , telling if individual 

reroutes to avoid negative impact of the event, 

each parameterized to fit to actual observed 

behavior.  

For each node i in the network we can compute 

result of ICM model using input from DTA, most 

importantly typical and actual travel times and 

costs. ICM computes ( )d

i   as shown in formula 

(11) which links three submodels of ICM defined 

through formulas (12) to (14): 

  ( ) 1 ( ) 1 ( ) ( )d d d d

i i i io k         (11)  

2
1

2
22( / ( ))( )

0( ) 1

a

a Md M

i I e e



 
  

   
 
   (12)  

4

3( ) ( )ad

i io a t    (13) 

    /
1

( )
1

p id w idid id
p

d

i w
e

   
 

   



 (14) 

Submodels of ICM model ((12) to (14)) are defined 

using following terms: 

M(τ) – global impact of the event calculated as total 

network delay at time τ:  

0 0

ˆ( ) ( ) ( )a a

a A a A

M t d t d

 

    
 

    (15) 

Δti(τ) – cumulated delay at node i: 

 ˆ( ) ( ) ( )d

i a a

a i

t t t  


    (16) 

( )d

ip  – cosine similarity between ˆ ( )d

ip   and 

( )d

ip  vectors, showing how the demand pattern 

differs:  

 2 2

ˆ( ) ( )

( )
ˆ( ) ( )

d

d d

d d

a a

d a i
i

d d

a a

a i a i

p p

p
p p

 


 



 



 

 




 
 (17) 

( )d

iw  – relative gap between actual and typical 

node satisfaction w (expected cost to get to 

destination – Dial, 1971):  
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ˆ ( ) ( )
ˆ ( )

( )
( ) ( ) ( )

d

d

d d

ad a
d i a i
i d d d

i a a
a i

p w
w

w
w p w

 



  













  




  (18) 

ICM is parameterized through set of parameters 

a={a1,…a4} plus parameters of logit model 

, ,
id idp w   

with following meaning: 

a1,a2 sensitivity of information spread to 

total severity of the event, a1 alters 

the total probability of receiving 

information and a2 the pace at 

which information is spread. 

a3,a4 probability of guessing the event 

from the total delay. 

, ,
id idp w     relative weight of  idp  and

 idw   in the rerouting utility 

used in binomial logit model (14) 

with logit parameter η 

 

8. Estimating ICM model 

The rerouting problem that we proposed based on 

equation (10) was underdetermined, though it can 

be now redefined using ICM model through (11) as 

shown in (19). We substitute ( )o

ar  of (10) with 

formula (19) where the traffic flows at arcs d

iq

(decomposed per destination) are multiplied with 

rerouting  probability d

i and with  d

a op 
which 

tells from DTA route choice model which share of 

flow d

iq at arc a reaches observed arc o at time τ (it 

can be seen as equivalent of ( )o

ar   resulting from 

the DTA model). 

   ( ) ( )o d d d

a a a a o

d D

r q p    



    (19) 

 ( ) ( , )o

o a

a A

r t a o  


   (20) 

Thanks to this elaboration (10) is no longer 

underdetermined as we can use ( )o

ar  of (19) where 

the flows d

aq  and share  d

a op 
 result from DTA 

model, while α is modelled with ICM. This way 

degrees of freedom are limited to the set of ICM 

parameters  , , ,
id idp w   a .  

With this extension (10) is no longer a simple 

linear equation, but becomes an estimation problem 

where objective is to parameterize ICM so that it 

will produce the observed extra flows ε through 

(20).  First let’s distinguish theoretical extra flow

( )o  at arc o defined through (21) and  define the 

objective function through some distance measure 

( ) ( )o o    . This way we can propose the 

estimation problem (22) to estimate ICM model 

parameters.  

   
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( ( , )) ( , )
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d d d

a a a o

a A d D

q t a o t a o p

 

   

 



     
 (21) 

, , ,
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e
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id id

p wid id

o o
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w

A

p

    

  

   
  





 

  
 

  
 

a

a

 (22) 

 

9. Field-data observations 

Above procedure is run with the input from 

temporal profiles of flows qa(τ) for each bridge 

crossing Wisła river in Warsaw (fig. 1). Flows were 

collected over 11 consecutive days (including day 

of the event), 6 of which were identified as typical.  

On the last observed day there was a severe event 

impacting the flows in the city. The event took 

place at Siekierkowski bridge (further denoted as 

the event arc e) on 9th April 2014, at 9:00 in 

eastbound direction. As a result two out of three 

lanes were blocked until 11:30 and capacity was 

reduced to ca. 1700 vehicles per hour and causing 

severe delays. During the day of the event drivers 

had access to number of information sources. 

Majority of the drivers were equipped with 

smartphones and some part of them uses traffic 

information services. Several companies provide 

traffic forecasts based on historical data coupled 

with actual state (mainly from FCD data), radio 

broadcasted information about the event with 

approximately 20 minute delay.  

The event arc e is the southernmost bridge in 

Warsaw and the arterial leading to it has only few 

junctions. The topology of the network points the 

only one logical ‘escape junction’ at which drivers 

could reroute to avoid impact of the event (marked 

with a cross at fig. 1). Such arbitral topological 

assumption reduces the search space of ra(τ) to a 

single junction. Rerouting drivers escaping at the 

escape-junction drivers switch to Wisłostrada – 

arterial parallel to the river leading to all the 

alternative bridges. 
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Fig. 1. Warsaw bridges, southernmost is affected 

 

 
Fig. 2. Typical observed temporal profile of traffic flow ˆ ( )aq  at the cut-set 
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Fig. 3. Flow observed over typical days at the affected bridge e 

 

Table 1 Typical hourly traffic flows and their standard deviations 

bridge Północny Gdański 
Śląsko-

Dąbrowski 
Świętokrzyski Poniatowskiego Łazienkowski Siekierkowski 

hour mean std mean std mean std mean std mean std mean std mean std 

0 200 24 132 22 185 16 68 5 335 51 325 47 353 44 

1 105 11 78 15 110 22 36 7 179 32 228 48 200 29 

2 75 10 45 11 81 27 20 8 119 33 188 56 156 23 

3 69 9 44 14 69 12 20 5 106 17 149 30 160 14 

4 103 9 61 10 77 10 26 5 107 10 224 57 223 15 

5 261 10 220 34 156 14 87 3 224 14 503 87 504 33 

6 714 20 555 83 266 8 315 21 751 25 1408 95 1542 29 

7 1240 47 1095 163 463 13 618 23 1375 18 2388 108 2871 184 

8 1550 26 1259 218 471 21 640 10 1553 36 2517 86 3304 58 

9 1295 49 1149 175 475 29 600 22 1536 42 2500 111 2852 564 

10 1267 66 1164 139 630 27 523 32 1551 64 2504 134 2758 442 

11 1349 37 1309 135 700 15 556 20 1643 67 2527 122 2804 485 

12 1478 71 1467 116 726 30 610 50 1694 70 2790 175 3042 140 

13 1684 196 1665 120 724 39 685 49 1797 65 3040 218 3184 182 

14 2188 272 1886 72 745 52 846 39 1971 34 3402 205 3731 216 

15 3143 200 2414 93 647 16 1172 71 2261 29 4050 183 4277 240 

16 3873 84 2475 29 669 30 1417 34 2453 92 4184 235 4656 473 

17 3806 101 2484 109 666 16 1250 97 2439 59 4236 293 4629 182 

18 3206 108 2206 346 602 28 957 10 2276 90 4058 225 4097 116 

19 2338 277 1684 220 739 31 665 26 1909 108 3182 234 3409 104 

20 1704 220 1217 109 703 16 467 24 1560 91 2507 276 2630 150 

21 1165 96 919 72 579 68 369 27 1230 54 1876 208 1831 114 

22 803 113 678 48 504 57 214 24 962 90 1278 118 1307 165 

23 426 103 336 48 348 81 134 34 594 62 673 152 717 119 
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10. Analysis 

In this and following sections field data is analysed 

to obtain the characteristics of the rerouting 

phenomena that can be derived from the 

observations.  

In the first step, representative subset of typical 

days Dtypical  is selected by excluding atypical 

observations (i.e. excessive demand on Friday). 

This way typical flow ˆ ( )aq   can be determined and 

observed extra flow ( )a   in most cases falls 

within the confidence interval computed with (2). 

As depicted on fig. 3, day-to-day traffic flow 

fluctuations of the event arc e are insignificant and 

typical flow well represents the expected/mean 

flow profile. The same holds true for most of the 

bridges, typical traffic flow profiles ˆ ( )aq   and their 

standard deviations over all bridges of a cut-set are 

shown in table 1. and at fig. 2.  

The event arc e has the highest total cumulative 

flow Q. Bridges in eastbound direction are more 

congested in the afternoon peak than in the 

morning. At the time of the event at alternative 

bridges there is still some capacity in eastbound 

direction available i.e. for rerouting vehicles. 

Centrally located Śląsko-Dąbrowski bridge is an 

exception as it works at capacity (ca. 700 veh/h) 

roughly throughout the day. 

Typical flows ˆ ( )aq  can be compared with atypical 

flows observed during the day of the event ( )aq  ) 

to derive extra part ( )a  . At the event arc e 

negative extra flow ( )e  is evident  (see fig. 4, 

table. 2), both at the level of flows and their 

cumulatives. In total during the day 3705 vehicles 

less has passed the bridge than typically 

( ( ) 3705)eE    which stems for  around 6% of 

daily flow and 25% of flow during impact period. 

Impacted period  has a strict beginning at 09:00 

with clearly identifiable loading-phase

 09 : 00 –  13: 00 . Interestingly the queue 

dissipation after the road is cleared is not observed. 

What we expected is that the queue which formed 

upstream of the event will dissipate at the level of 

capacity until it reaches back the typical values 

when queue diminishes. While what we observed is 

the flow recovering to typical levels (13:00), 

reaching capacity much later, during afternoon 

peak (16:00). Traffic flows are slightly above the 

typical values only for a short period

 14 : 00 16 : 00 . Therefore the limitation of 

impacted period e

e  is not obvious. Here we assume 

that impact period coincides with capacity 

reduction time (loading-phase) and the flows above 

typical in the unloading phase are neglected. 

Nevertheless the observation at event arc e fits into 

definition of negatively impacted arc proposed in 

former section. For the remainder of calculations 
e

e  =  09: 00 –  13: 00  is used. Having estimated 

the impact period e

e  , R according to (6) can be 

estimated. In total during the impact period R=–3 

705 vehicles less has travelled through the bridge. 

What shall, however, be tested is the conservation 

rule (7), for this end typical and atypical flows at 

the remainder of cut-set are compared and ( )eE 

for each bridge is obtained (depicted at fig. 11). 

 

 
Fig. 4. Flow and cumulative flow (dashed) of affected bridge, typical and atypical (red) 
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What is interesting to see is the flow profile 

crossing the whole cut-set during the impacted time 

(typical and atypical) as in fig. 5. Traffic crossing 

the river drops significantly at time of the event 

(09:00) which coincides with the drop at the event 

arc e at 09:00, yet at 10:00 it is recovers 

approaching to typical and at 11:00 it goes above, 

going back to typical values at 14:00. Base on the 

above the total impact time of the whole cut-set is 

identified as  09 : 00 –  14 : 00 .  

Having rough overview of the entire cut-set the 

situation at single alternative bridges can be looked 

at. From the charts showing typical and atypical 

flows, extra flows ε of each bridge can be 

identified. At the neighbouring bridge 

(Łazienkowski, fig.6) positive ε appears at 10:00 

and reaches back the typical level at 13:00, 

analogous behaviour can be seen at three 

consecutive bridges (fig. 7-9). While on the two 

northernmost bridges: Most Północny (fig.10), and 

Most Gdański the observed flows are typical 

throughout the whole day–they are not impacted by 

the event.  

 

Table 2. Flow q and cumulative flow Q of affected bridge, typical and atypical, impact period in red 

  traffic flows q cumulatives Q 

hour typical atypical typical atypical 

0 353 391 353 391 

1 200 245 553 636 

2 156 167 708 803 

3 160 174 868 977 

4 223 240 1091 1217 

5 504 543 1595 1760 

6 1542 1505 3137 3265 

7 2871 3017 6009 6282 

8 3304 3238 9312 9520 

9 2852 1583 12164 11103 

10 2758 1784 14922 12887 

11 2804 1724 17725 14611 

  traffic flows q cumulatives Q 

hour typical atypical typical atypical 

12 3042 2850 20768 17461 

13 3184 2994 23952 20455 

14 3731 3566 27683 24021 

15 4277 4348 31960 28369 

16 4656 4911 36615 33280 

17 4629 4693 41245 37973 

18 4097 4034 45342 42007 

19 3409 3354 48751 45361 

20 2630 2632 51382 47993 

21 1831 1919 53213 49912 

22 1307 1294 54520 51206 

23 717 729 55237 51935 

 

 
Fig. 5. Flow of whole screenline typical and atypical (red) 
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Figures 6–10. Typical and atypical (red) flow at alternative bridges 
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11. Summary of observations 

Table 3 shows extra flows at impacted, alternative 

bridges, based on this the total rerouting flow 

computed with (8) is 2809R    which confronted 

with 3705R    computed with (6) shows that 

flow conservation did not hold true and ca. 24% of 

flow did not cross the river at all. Therefore the 

corrected estimate of total rerouting flow computed 

with (8) is used as more appropriate, which yields 

lower total rerouting share of 

2809 /14640  19,2%.  

The field data discretized every hour did not allow 

to precisely estimate the time dimension of 

rerouting flows ra(τ). However we can say that 

there is a delay time between the event and time 

when rerouting flows are observed at alternative 

bridges. This delay is visible at fig. 11 when ε is 

negative for event arc at 09:00 and becomes 

positive for alternatives at 10:00. Which, taking 

into account the approximated travel time from 

‘escape-junction’ to closest alternative (Most 

Łazienkowski) of 13 minutes, leads to the 

conclusion that rerouting starts less then hour past 

the event but not immediately. The above is all that 

can be stated this data discretization about timing 

of rerouting. 

The extra flows ( )a  are increasing in time 

reaching the top level ca. 2 hours past the event. 

Which is coherent with the ICM assumption that 

rerouting flows are positively correlated with time 

past the event (reflected in information spread 

model of ICM - (12)) and the delay caused by the 

event (reflected in all three ICM submodels – 

through M, Δt, Δw, Δp (11)).  

To conclude the new route choice pattern being 

impact of the event can be approximated as shown 

in table 4. We see that the closest alternative takes 

biggest share of rerouting flows, and the share 

decreases as the distance (cost to reach the 

alternative) increases, which fits the assumption 

that users make rational choices in rerouting case 

(they minimize the travel costs), as well as the 

assumption that users take into account the choices 

made by others (not only single optimal alternative 

is used). Those observations support the ICM 

assumptions that a) rerouting is driven by cost 

minimizing formula, i.e. drivers reroute according 

to ( )d

ap  b) more than one iteration of DTA is 

needed to reproduce rerouting route-choice pattern, 

with ( )d

ap  being updated every iteration. 

 

Table 3. extra flow ε at alternative bridges 
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P
ó

łn
o

cn
y
 

Ś
ląsk

o
-

D
ąb

ro
w

sk
i 

Ś
w

ięto
k

rzy
sk

i 

P
o

n
iato

w
sk

ieg
o
 

Ł
azien

k
o

w
sk

i 

S
iek

ierk
o

w
sk

i 

9 12 30 24 -25 12 -1269 

10 28 85 98 264 187 -974 

11 -11 113 101 268 667 -1080 

12 -29 27 112 263 390 -192 

13 83 -16 30 143 38 -190 

sum 83 239 364 912 1294 -3705 

 

 
Fig. 11. extra flow ε at alternative bridges 

 

Table 4. route-choice between bridges of a cut-set 
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typical 12.6% 5.8% 5.3% 14.6% 23.7% 26.0% 

atypical 12.7% 6.3% 6.0% 16.5% 26.5% 19.8% 

extra  3% 9% 13% 32% 46% - 

 

12. Conclusions 

In this article we found evidence of existence of 

rerouting phenomena, which was observed through 

the field-data. We have seen an extra flow at 

alternative bridges when major bridge was blocked. 

We managed to approximate most important 
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characteristics of rerouting: share of impacted flow 

which reroutes ~20%, time of rerouting ~1hour 

after the event. The emerging route-choice pattern 

for rerouting flows show that not only optimal 

alternative is chosen when rerouting, but also 

others which evidences the strategic capabilities of 

(at least Polish) drivers. What is more we observed 

relation between additional travel cost of rerouting 

through alternative and its share among rerouting 

flows. Distant alternatives are not used and share 

increases while the cost to reach it decreases. 

Furthermore we provide theoretical framework for 

rerouting model estimation using observation of 

traffic flows crossing the cut-set of the network (in 

our case the river). Full estimation requires both the 

observed data and established, real-time dynamic 

traffic assignment model which is yet not available.  
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