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Abstract: Assessment of travel time reliability as a fundamental factor in travel behaviour has become a very 

important aspect in both transport modelling and economic appraisal. Improved reliability could provide a 

significant economic benefit if it is adequately calculated in cost-benefit analyses for which the theoretical 

background has already been set. However, methods to forecast travel time reliability as well as travel 

behaviour models including its effects are rather scarce and there is a need for development in this field. 

Another important aspect could be the influencing factor of reliability in travel demand management and 

related policy-making. Therefore, this paper intends to further analyse reliability focusing exclusively on 

urban road transport based on automatic measurements of journey times and traffic volumes from a dataset 

of the city of Budapest. The main finding and the novelty of the study is a model which can forecast the 

standard deviation of travel times based on the volume-capacity ratio and the free-flow travel time. The paper 

also provides a real-life numerical experiment in which the proposed model has been compared with other, 

existing ones. It proves that besides existing mean-delay-based models, travel time reliability can be 

forecasted based on the volume-capacity ratio with an adequate accuracy. 
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1. Introduction 

Management and planning of urban transport 

systems is a complex task which demands a 

comprehensive approach in supporting decision-

making. In order to make ‘well-informed’ decisions 

(e.g. choose the best alternatives in developing the 

system), it is indispensable to take into consideration 

every relevant aspect and effect of the given 

interventions. For this purpose, there are different 

policy and project assessment tools. A universal, 

widely accepted and long-standing tool is cost-

benefit analysis (CBA) which is mainly assessing 

projects from an economic point of view. However, 

one can argue that the method itself has its own 

limitations and there are important effects which can 

be hardly monetized (or just quantified). Previous 

papers reviewed these limitations and challenges 

ahead for appraisal methods (Mátrai and Juhász, 

2012; Mátrai, 2013). Major transport economists 

accept that there are new, innovative methods, but 

most of them believe that with methodological 

additions and proper quality of implementation CBA 

still allows the most prudent form of analyses to be 

carried out. (Laird et al., 2014; Vörös et al., 2015) 

In recent years travel time reliability (TTR) is an 

increasingly important issue among transport 

experts (ITF, 2010). One of the leading international 

organizations – OECD – organized a roundtable in 

late 2015, where several transport economists 

provided their view on this issue (Kouwenhoven and 

Warffemius, 2016; Fosgerau, 2016). Travellers 

intend to optimize their daily activity chains 

(Esztergár-Kiss and Rózsa, 2015), which results in 

shorter travel times and they are also sensitive to the 

variability (predictability) of travel times as 

unreliability press users to use safety margins 

(buffer times) which cause an additional disutility 

(travel cost) beyond pure travel time. Therefore, 

TTR is a fundamental factor in understanding and 

modelling travel behaviour. Furthermore, improved 

reliability could be a significant economic benefit if 

it is calculated in CBAs. Several countries have 

recently decided to include TTR in their CBA 

guidelines and defined the monetary values (i.e. 
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value of reliability, VOR). However, methods to 

predict the impact of interventions on TTR 

(reliability forecast models) as well as travel 

behaviour models including TTR effects are also 

needed. These models are still rather scarce and 

there is no concord among professionals on which 

method should be used. (Eliasson, 2006; de Jong and 

Bliemer, 2015). 

Another important aspect could be the influencing 

factor of reliability in travel demand management 

and related policy-making. On the one hand, in case 

of restrictive road projects (e.g. traffic calming 

projects) a decrease in reliability could mean an 

undesirable side effect (a loss for the society). On 

the other hand, in case of a public transport or non-

motorized development, modal shift can have a 

positive effect on overall TTR. Moreover, reliability 

of travel times could also influence land-use 

decisions, so it should be a factor in land-use and 

transport interaction modelling as well (Juhász, 

2014). TTR can be also important for analysis of 

cycling investments, since the mode shift from car 

to cycling is usually marginal. In absolute terms the 

number of cars decreases only with a small amount 

which provides nearly no impact on travel times, but 

might have a significant one on reliability. 

Nowadays the pervasive development of info-

communication technologies and intelligent 

transport systems (e.g. intelligent sensors) provides 

the opportunity to further analyse TTR and expand 

possibilities in forecasting. These investigations 

should be focused on urban regions for two 

important reasons: (1) more than 50% of the world 

population is living in an urban area and according 

to the general predictions this ratio is expected to 

further increase (United Nations, 2015); (2) 

congestion (and unpredictability) as a major 

transport issue are mainly concentrated in cities 

(ITF, 2010; Rao A.M. and Rao K.R., 2012). As well-

established and widely accepted guidelines are 

missing on how to forecast TTR, there is a need for 

further analysis. This study focuses exclusively on 

urban road transport as it is presumed that the 

reliability issue is mostly significant in this setting, 

however it is likely to be relevant in other 

circumstances (such as for long-distance or public 

transport trips) as well (Eliasson, 2006; Spławińska, 

2015; Horbachov et al., 2015). The database of road 

operators can be a platform to measure reliability as 

road authorities often collect data of traffic volumes 

and individual vehicle trips for different purposes 

(e.g. to provide information for road users on 

estimated travel times to a certain destination). From 

these dataset, the reliability of a given route can be 

characterized, if the traffic situation (e.g. saturation 

level) is also known. 

Based on the aforementioned aspects and focusing 

on urban road transport, the objective of this paper 

is to: 

- provide a brief review on TTR approaches; 

- explore the relation between TTR and relevant 

traffic parameters based on the case study of 

Budapest, in which automatic travel time 

measurement of a traffic information system has 

been used; 

- propose a methodology to forecast TTR and draft 

further research. 

 

2. Review of TTR approaches in transport 

appraisal 

The topic of TTR has been investigated by numerous 

studies. The history of the research is summarised 

by Taylor (2013). In this section a brief review is 

provided from the most relevant papers to describe 

the background of the topic and this research. 

Travel times of road trips are usually not stable over 

time. Variations occur as a consequence of 

fluctuations in travel demand and road capacity. A 

part of these fluctuations is known to road users (e.g. 

regular, cyclical variations), while another part is not 

(irregular or random variations). This paper focuses 

on unexpected variations which can cause that road 

users arrive earlier or later than expected. The 

unreliability forces travellers to add buffer times to 

their trips in order to avoid being late. This is then 

an additional disutility (cost) to mean travel time. 

But in some cases standard buffers (‘head starts’) 

could be insufficient and lateness could also cause 

another disutility, while arriving too early can also 

have its unpleasantness. So unreliability could mean 

a cost for users as they might face additional travel 

times, lateness, waiting times and even they may 

need to reschedule their activities. All of these might 

be accompanied by bad feelings such as anxiety. 

(Dale et al., 1996 ; Bates et al., 2001; Peer et al., 

2010; Taylor, 2013) 

TTR is the level of unpredictable, day-to-day 

variation of travel times, which represents the 

temporal uncertainty experienced by road users 

during their trips and it is related to transport 
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network conditions in a complex way. In this 

interpretation, reliability is basically equivalent to 

the predictability of travel times and associated with 

the statistical concept of variability (Kouwenhoven 

and Warffemius, 2016). A high level of reliability 

means a low level of variability (uncertainty), which 

indicates that travel times are mostly predictable. 

However, reliability can also be approached from 

the aspect of expectations. In that regard, users are 

expecting (!) a certain level of service upon which 

they organize their activities and reliability is 

proportional to the ability of the transport system to 

fulfil this requirement. Travel time variability can be 

caused by special events (e.g. accidents) as well but 

in this paper the focus is purely on day-to-day 

variations which mainly arise in congested situations 

as several studies found that the main explanatory 

factor of travel time variability is mean travel time 

(i.e. the sum of free flow travel time and mean 

delay). In a severe congestion, this variation might 

be very significant, but if it is very severe, variability 

can also become a decreasing function of travel time 

as in a very congested situation travel times are 

mostly homogeneous (Eliasson, 2006; Mátrai 2012). 

By improving TTR, additional ‘buffer’ times, 

waiting times and the probability of lateness could 

be decreased. For certain projects, not including 

TTR in economic calculations, a significant benefit 

or loss may be disregarded. That is why the 

economic impacts of TTR changes are more and 

more about to appear in CBAs. Travel time-related 

benefits are traditionally measured as the 

improvement of journey times. With incorporating 

reliability, those time benefits need to be split into 

(conventional) travel time savings and savings on 

TTR. Different studies proved that reliability could 

have a very significant effect in CBAs. Previous 

papers (e.g. Mátrai and Juhász 2012) pointed out that 

including reliability benefits in a public transport 

investment could add to 8-15% to the economic 

benefits, while others such as Eliasson (2006) or 

Kouwenhoven and Warffemius (2016) found that in 

road investments it could also add 10-60% to the 

benefits. In order to calculate the economic impact 

of TTR in a given project the following steps are 

needed based on the papers of Kouwenhoven and 

Warffemius (2016) and Fosgerau (2016): 

1) determination of a monetary value of reliability 

(VOR – the cost to travellers per unit of travel 

time variability), 

2) measurement and prediction of the level of TTR 

(the quantity of travel time variability), 

3) incorporating the reaction of users to reliability in 

travel behavioural models (e.g. in route choice 

models by including the cost of variability into 

the generalised travel cost function). 

In order to go through the aforementioned steps, first 

and foremost a unit of measurement needs to be 

defined for TTR. Approaching the topic from this 

operational (measurement) aspect, there are two 

main groups of definitions for reliability. The first 

one is the ‘mean-dispersion’ model which defines a 

measure of dispersion of travel time distribution 

(standard deviation, variance range, percentiles 

etc.). In this model the standard utility function 

contains the travel cost, the travel time and the 

dispersion of travel time. Value of time (VOT) can 

be defined as the marginal rate of substitution 

between travel time and travel cost, while VOR is 

the rate of substitution between reliability and travel 

cost. The latter represents the monetary value 

travellers place on improving the predictability of 

travel times (i.e. reducing the travel time variability). 

The second group is the ‘scheduling delay’ model, 

in which the scheduling consequences of TTR are 

measured by the expectations of arriving or 

departing earlier or later then the preferred time. 

(Dale et al., 1996; Eliasson, 2006; Fosgerau and 

Hjort, 2008; Fosgerau et al., 2008; TRB, 2011; de 

Jong and Bliemer, 2015). 

Having reviewed the literature on TTR approaches, 

it seems that at this stage (!) standard deviation of 

travel time is the most appropriate way to quantify 

the variability of travel times within the mean-

dispersion model. It seems the era of scheduling 

models is still to come as there are only a limited 

number of practical researches on this field. 

Furthermore, the data on the preferred arrival time 

of the users is very limited which is a prerequisite of 

using the scheduling model. Then the mean-

dispersion model can be applied and the only 

question is how to measure the dispersion within. 

Numerous studies pointed out that travel times are 

not normally distributed and there is an evidence of 

skewness to the upper tail (Taylor 2013; Susilawati 

et al. 2013; de Jong and Bliemer 2015). Due to this 

fact some papers like Eliasson (2006) or de Jong and 

Bliemer (2015) suggested to not use the standard 

deviation as a measure of dispersion because it is 

affected by this skewness, as it is basically (and 
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more appropriately) used for symmetrically 

distributed variables. Therefore, these papers 

suggested to use the difference of specific quantile 

values or difference between quantiles and the mean 

travel time. However, Fosgerau (2016) showed that 

the standard deviation is proportional to the other 

measures of dispersion such as differences of 

specific quantiles. Moreover, he also stated that 

theoretically standard deviation is more appropriate 

for commuters with inflexible working times which 

are more general among travellers in an urban peak 

hour. Standard deviation has several advantages: (1) 

it is easy to estimate, (2) it is easy to include in a 

transport model and in a CBA, and (3) it is the most 

common TTR measurement in practice. However, 

there are further arguments against as there are 

difficulties in calculations over routes as it is not an 

additive formula (only variances of links can be 

summarized). Another mode of visualisation of 

travel time reliabilities and changes is the rubber 

sheet method used on travel time maps (Ficzere et 

al., 2014; Kouwenhoven and Warffemiu,s 2016). 

Based on the consideration of Fosgerau and due to 

the limited data on preferences required for 

scheduling models, in this research the standard 

deviation is used as a proxy for TTR. 

The conceptual models of the valuation of travel 

time variability (basic model, step model, slope 

model) are summarised by Fosgerau (2016), while a 

study from de Jong and Bliemer (2015) provides a 

comprehensive review on deriving VOR and on 

TTR forecast models. VOR is mostly expressed as 

the product of VOT and a reliability ratio. Based on 

this review, reliability ratios are mostly in the range 

of 0.4 and 1.1 for passenger transport, while it is 

usually a bit lower (between 0.1 and 0.4) for freight 

transport. In terms of TTR forecast models the study 

mentions seven national methods from which five is 

summarized here by Table 1, in which ‘D’ is the 

distance; ‘MD’ is the mean delay, ‘s’ and ‘s0’ is the 

maximum and minimum of standard deviation of 

travel times respectively; ‘std’ is the standard 

deviation of travel times; ‘t’ is the (mean) travel 

time; ‘t0’ is the free-flow travel time, ‘v’ is the speed; 

‘F/C’ is the traffic volume (flow) – capacity ratio, 

while ‘a’, ‘b’, ‘c’ and ‘d’ are constant parameters. 

Most of these models calculate the standard 

deviation of travel times based on the estimated 

mean delay (ratio of mean travel time and free-flow 

travel time) as an indicator of congestion. All of 

these models are quite useful to measure TTR 

impacts (standard deviation), but the problem is that 

TTR cannot be incorporated to a standard 

assignment model in a way that it is depending on 

the mean travel time as it is calculated within the 

process. So the main issue is the interdependence 

between these values. Furthermore, it is important to 

note that some interventions could have different 

impacts on mean travel time and TTR, which also 

suggests to forecast the standard deviation 

independently of the mean delay. The model from 

New Zealand is an exception as it calculates the 

standard deviation based on the extreme values and 

the F/C ratio. This model avoids the issue of TTR 

and mean delay interdependence (the ‘endogeneity’ 

issue), but it is also impossible to incorporate TTR 

to assignment models this way as the model uses the 

extreme values of standard deviation, which cannot 

be properly estimated beforehand for future years. 

 

3. Forecasting reliability in urban road 

networks 

Based on the aforementioned aspects of existing 

methods, this study aimed at developing a model to 

forecast the standard deviation of travel times based 

purely on the F/C ratio and the free-flow travel time. 

This approach is basically parallel to developing 

volume-delay functions (VDFs) which describe the  

 

Table 1. Summary of existing TTR forecast models based on de Jong and Bliemer (2015) 

# Name of model (nation) Expression 

1 Arup 2003 (UK) std = 0.148 MD0.781 D-0.285 t 

2 NZTA 2010 (New Zealand) std = s0 + (s-s0) / (1 + exp[a (F/C - 1)]) 

3 
Kouwenhoven et al. 2005 and Kouwenhoven, 

Warffemius 2016 (The Netherlands) 
std = a + b MD + c ln (MD+1) + d D 

4 Eliasson 2006 (Sweden) std = t exp(a + b (MD-1) + c (MD-1)3) 

5 Geistefeldt et al. 2014 (Germany) std = a MDb 
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mean-delay based on the saturation level and the 

free-flow travel time of a link. In this way it would 

be easy to calculate an index of TTR (standard 

deviation) within a standard macroscopic transport 

model and also to incorporate reliability into the 

choices of travellers. In this paper it was also 

intended to develop this new method and compare 

the results with those of the existing models. 
 

3.1. The concept 

On a macro transport modelling level, the widely-

used VDFs are describing the expected values of 

travel time (or mean delays). These functions 

provide fairly good estimations and a better way of 

estimation is still to be discovered. However, 

existing urban transport models usually does not 

calculate the standard deviations of these expected 

travel times (so that TTR). Therefore, and based on 

the review of existing TTR forecast models, the 

essential concept was to develop a similar function 

to VDFs to determine the relationship of traffic 

volume and TTR. With such a function TTR could 

be forecasted for ‘do-nothing’ (reference) and ‘do-

something’ (project) cases during a transport 

modelling procedure. As reliability is generally 

affected by the level of congestion, i.e. the F/C ratio, 

a universal parameter of traffic state has been chosen 

as an explanatory variable for two reasons: (1) it is 

easy to calculate it in a transport model; (2) it can 

purely represent the level of congestion without 

using other estimated and interdependent values 

such as mean delay. To this end and based on Taylor 

(2013) a longitudinal data collection was needed in 

which trip times and saturation levels for given 

(preferably longer) urban routes were 

simultaneously measured. In case of the latter, 

counting the traffic volumes is enough as road 

capacities are known from design standards. 

Ultimately, assignment models and economic 

assessments can use the estimated values of standard 

deviations. 
 

3.2. Data 

In case of the city of Budapest (Hungary) it became 

possible to carry out the aforementioned experiment 

due to the so-called ‘Easyway’ project in which a 

traffic information system was implemented. A 

previous paper (Juhász et al., 2016) analysed the 

speed-flow relationship on urban roads which used 

the same data, therefore the description of it is based 

on that paper. On the inner section of M1-M7 

motorway and main road No. 6 automatic number 

plate recognition cameras and variable message 

signs were installed in 2012 in order to inform the 

inbound traffic on the real-time average access time 

of the Danube bridges. Fortunately, the affected area 

is mostly covered with traffic-counting detectors 

which made it possible to measure traffic volumes 

on the road network. Figure 1 shows the 

measurement area. 

A dataset from April 2014 was selected in order to 

carry out this research. The total number of 

measurements for the whole month is 525,000 (i.e. 

those trips for which it was possible to register both 

the travel time and the related traffic volumes). The 

automatic travel time measurement procedure 

classified the data into 6 and 15-minute time 

intervals for peak (from 4 a.m. to 5 p.m.) and off-

peak periods respectively. Traffic volumes were 

registered by detectors in time intervals of 4, 8 and 

10 minutes for peak (from 4 a.m. to 10 a.m. and from 

12 a.m. to 6 p.m.), intermediate (from 10 a.m. to 12 

a.m.) and off-peak (from 6 p.m. to 4 a.m.) periods 

respectively. 

As travel time values were automatically rounded to 

minutes, whole routes were analysed because these 

rounded values are not characterising shorter road 

sections adequately. That was a severe limitation 

this research needed to face. Therefore, it was also 

needed to calculate route-level F/C values based on 

sectional ones. However, analysing whole routes has 

the advantage, that the results are easily comparable 

with drivers’ expectations, as they think on the route 

level rather than on short section level. 

 

3.3. The methodology 

As transport modelling usually tries to represent a 

common, average setting of the transport system, its 

conclusions are mostly limited to generalized 

statements. While it would certainly worth to 

analyse the data of diverse time periods such as 

seasons or specific days, however, this study needs 

to follow the underlying generalization of transport 

modelling. Due to this consideration the dataset was 

filtered and days from Friday to Monday have been 

excluded. 

As a first step the statistical solidity was checked for 

each measurement (for both the travel times and the 

traffic volumes). Due to failures or obviously wrong 

measurements some traffic counting locations were 

excluded from the analysis. 
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Fig. 1. The map of the measurement area (based on Juhász et al. 2016) 

 

Extreme events were also excluded from the dataset 

based on Kouwenhoven and Warffemius (2016) in 

order to focus purely on day-to-day variations and to 

maintain consistency with underlying methods, as 

speed-flow curves and VOR stated preference 

surveys also exclude these extremes. Following the 

suggestions of the study, a boundary of exclusion 

was set to three times the raw standard deviation of 

travel times. As a consequence of filtering the 

extreme events (1,750 observations in total) a 3% 

decrease in the mean travel time and 15.4% in the 

standard deviation have been observed. 

This study presents its results based on the data of 

route no. 4 as it had the most reliable dataset. The 

results were fairly similar on the other routes, but 

some lack of data and slight errors affected them. In 

case of route no. 4 around 80,000 measurements 

were available throughout the workdays that were 

involved in the analysis. The data coverage is shown 

by Figure 2. One can note that at least 100 

measurements can be found in each saturation group 

of 5% and also in each ‘hour of the day’ group (the 

latter indicates the hour in which the measured car 

passed the starting point of the route) - Juhász et al. 

(2016). 

Route no. 4 is a major – transit – route which is about 

6.1 km long, starts at the end of a motorway and ends 

in the city centre. The selected route consists of 

different major road types. It means that minor and 

residential roads are not included but this should not 

be a problem as TTR is basically relevant on major 

urban roads. Speed limits are varying throughout the 

route (100-70-50 km/h as someone approach the city 

centre). In terms of intersections, there are six 

locations with traffic lights in a 24/7 mode and four 

pedestrian crossings without any signalization. 

Traffic volume is around 38,000 vehicles per day per 

direction on an average, from which around 20% is 

transit traffic. The morning peak is stronger, 

therefore the inbound direction was analysed in this 

work (see Figure 2) - Juhász et al. (2016) 

In this study – contrary to other ones – the travel time 

dataset was not divided into specific (e.g. 15-

minute) time intervals. Instead, F/C groups were 

created to calculate mean travel times and standard 

deviation as a relationship was sought between F/C 

values and standard deviation of travel times. 

One of the major issues of this research was the 

difference between observed and modelled 

saturation ratios. 
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Fig. 2. The number of measurements according to the time of the day and journey times for route no. 4 

 

Observed ones are calculated based on the actual 

traffic volume, but modelled values are in 

connection with travel demand, which means the 

number of users that are intended to use the road. 

The whole problem can be well-illustrated by the 

difference between two diagrams: the speed-flow 

diagram (the so-called fundamental diagram on the 

basis of Greenshields (1935) and Stamos et al. 

(2015)) and the standard VDF applied in transport 

modelling (see Ortúzar and Willumsen, 2011). In 

order to give an example, take a measured F/C value 

of 0.7 which can mean 0.7 in modelling if there is no 

congestion (labelled as ‘normal state’ and illustrated 

by point A in Figure 3) and a value above 1 if there 

is congestion (labelled as ‘congested state’ which is 

illustrated by point B). One can note that these traffic 

states are referred by different names in the 

literature: ‘ordinary congestion’ and ‘hyper-

congestion’ are also in use respectively. 

The task was to: (1) distinguish normal (not 

congested) states from congested states on the 

speed-flow curve; (2) find the proper F/C value in a 

modelling sense which can adequately represent a 

given congested state (point B’ in the figure). In 

order to accomplish, first and foremost the validity 

of the speed-flow relationship for urban routes 

should be clarified. It was done in another part of 

this research and the results can be found in another 

paper (see Juhász et al., 2016). The applied method 

and relevant consequences are summarised in the 

following paragraphs. 

‘Normal’ and ‘congested’ traffic states were 

distinguished with a method that analyse the dataset 

in a time sequence (going through each time step of 

the measurement). The classification method was 

defined based on the theoretical shape of the speed-

flow curve (assuming that it is valid for this case 

based on Woollett et al. (2015) and Vasvári (2015). 

The theory suggests that a traffic state should be 

‘normal’ if the F/C ratio and the mean travel time are 

changing in the same direction compared to the 

previous time step. And all other states should be 

labelled as ‘congested’ ones. Note that speed values 

of the fundamental diagram can be easily converted 

into journey times as the length of the route is given. 

However, within the literature congestion or 

congested states are often defined based on absolute 

or relative increases in travel times (e.g. in Eliasson, 

2006). 
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Fig. 3. The connection of the speed-flow relationship and the volume-delay function 

 

In this work congested travel times cannot be 

analysed in a framework in which the state of 

congestion is defined on the magnitude of travel 

time which is a dependent variable. Therefore, this 

research defines ‘normal’ and ‘congested’ states 

based purely on the sign of the change. In this way 

the classifying model is not overdetermined 

compared to the previously mentioned methods. 

As it was needed to analyse longer routes it was a 

difficult issue how to calculate the route-level F/C 

ratio in a given time interval. Each traffic counting 

stations characterise a shorter route section and if 

congestion starts to evolve in a section it needs time 

to spread to other sections. It is similar to the well-

known wave propagation phenomenon from traffic 

flow theory (see Daganzo, 2007). Along the route 

three sections have been distinguished and 

characterised by traffic counting detector(s). Road 

capacity values were calculated based on the 

location of detectors. Having tried different methods 

to characterise the saturation level of the route, 

eventually the maximum of sectional F/C ratios 

were used. There were two reasons for that: (1) 

differences between sections were limited to 15-

20%, and (2) results were more reasonable (e.g. 

Bureau of Public Roads - BPR function fit better) 

compared to taking the minimum or the average of 

F/C ratios. An underlying reason is the fact that the 

analysed sections are quite long ones with a length 

from 1.2 to 3 kilometres and they are strongly 

interdependent as it was observed that a heavily 

congested section can significantly influence the 

travel time on the whole route. It should be noted 

that the location of the maximum sectional F/C ratio 

is dynamically changing, which is quite natural. 

Based on the distinguished traffic states it was 

eventually found that the fundamental diagram can 

also be used in an urban environment. However, 

there are some uncertainty concerning the transition 

states around the boundary of normal and congested 

states. After distinguishing measured F/C values 

based on whether those representing ‘normal’ or 
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‘congested’ traffic states, it was needed to transform 

congested ones. A conversion method was needed as 

observed F/C values that cannot be higher than 1 can 

describe congestion (e.g. a 0.7 F/C value can mean 

a slightly congested state), but in transport 

modelling congested states are measured with values 

above 1. Due to the validity of the speed-flow 

relationship, the transformation has been done using 

a “mirror” function which consists a contraction as 

well. The empirical background of the function 

comes from the difference between observed and 

modelled traffic states illustrated by Figure 3.  

A function that describes the conversion between 

observed and modelled saturation for the congested 

states was defined based on the VDF estimations of 

Juhász et al. (2016). It is presented by Equation (1): 

 

mod

1 /
/ 1 obsF C

F C
c


  , (1) 

 

where the modelled and observed saturation levels 

are represented by ‘F/Cmod’ and ‘F/Cobs’, and there is 

a correction (or contraction) parameter labelled by 

‘c’. Its value was calibrated around 1.2 during the 

VDF experiments. 

 

4. Results and discussion 

The process of the aforementioned saturation level 

correction resulted in a dataset consisting of a mean 

travel time and a standard deviation value for each 

F/C group. Based on the data a BPR function (a 

standard type of VDF, see Equation 2) was 

calibrated based on both ‘normal’ (not congested) 

and ‘congested’ states: 
 

0 1

b
F

t t a
C

  
        

. (2) 

 

Within function (2) ‘t’ is the mean travel time, while 

‘t0’ is the free-flow travel time. The estimated 

constant parameters are the following: a = 0.841,  

b = 2.52. During all estimations the dataset was 

grouped based on the F/C ratios in 5% intervals. 

Figure 4 illustrates the accuracy of the VDF 

estimation. 

Based on the standard deviation values a function 

can be developed, which can describe the 

relationship between the standard deviation of travel 

times and F/C groups. Setting out from the shape, a 

standard cubic function turned out to fit the data 

points as three stages of the function can be 

observed. For very low F/C ratios the standard 

deviations of travel times are higher and decrease up 

to around the saturation level of 0.35 where the 

function has a local minimum. For higher F/C values 

the standard deviation is constantly increasing to the 

local maximum point (around 1.25 F/C value) from 

which there is a slight decrease. The reason is quite 

logical and well-described in the literature (see de 

Jong and Bliemer (2015) or Eliasson (2006)). 
 

 
Fig. 4. Measured and modelled mean travel times (route no. 4)
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For very low traffic volumes the traffic state could 

be ‘instable’ and the variability of travel times might 

be higher than normally expected. As traffic volume 

increases, the traffic state is becoming ‘stable’ up to 

the local minimum point. From this point the traffic 

starts to become heterogeneous and travel time 

variability is increasing with the saturation level. 

Then towards a heavy congestion state traffic is 

about to become homogeneous due to queuing, in 

which state the variability of travel times is 

decreasing. The process is also illustrated by the 

density plots of the travel time observations for 

specific saturation groups (see Figure 5). 

One can note that the higher standard deviation 

values in case of very low saturation levels should 

be disregarded in the forecasting model as the higher 

variability of travel times is presumably coming 

from the higher level of freedom in choosing 

cruising speed. It means that this higher variability 

is reflecting a nearly free-flow traffic state in which 

the heterogeneity of car drivers is more perceptible. 

Despite the phenomenon is not correlated with 

congestion it is a feature of the proposed model. 

However, this issue can yield further considerations, 

analyses and possible modifications of the model. 

Then standard deviation is described by Equation 

(3): 

 
3 2

0

F F F
std a b c d t

C C C

     
            

     
. (3) 

 

As a result of a multiple linear regression analysis 

the estimated parameters are the following: a = -

2.532, b = 6.515, c = -3.588 and d = 0.298. Figure 6 

illustrates the accuracy the forecasting model of the 

standard deviation (TTR). It should be stressed that 

all measured data (travel times and standard 

deviation) were calculated for F/C groups (steps of 

5%) as the forecasting problem was approached 

from a transport modelling point of view in which 

the saturation level (F/C ratio) has the largest 

influence. The standard deviation function has a 

point of inflection at around 0.85 F/C ratio, which 

seems to be theoretically appropriate as the 

boundary between ordinary and hyper-congestion 

should be somewhere around 1 but a lower value is 

also possible. It should be also stressed out, that the 

shape of the function comes from the above 

mentioned theoretical considerations (i.e. to 

adequately describe the phenomenon) and not 

because it provides the best fit to the data points. 

Kouwenhoven and Warffemius (2016) suggests to 

not only calculate the raw standard deviation but to 

use a correction for the expected travel times. Then 

the deviation of the real travel times is calculated 

from the predicted travel times. In this study mean 

travel times and standard deviation values are 

calculated for F/C groups in which there can be data 

from different days and time periods which makes it 

impossible and unnecessary to determine expected 

travel time values. Therefore, this correction was not 

relevant for this research. 

 

 
Fig. 5. Frequency of observed travel times for different F/C groups (route no. 4, dark grey – actual F/C 

group, light grey - total) 
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Fig. 6. Measured and modelled standard deviation of travel times (route no. 4) 

 

The role of route length as an explanatory variable 

for standard deviation was also analysed but it was 

found that based on the data from Budapest it is not 

significant. However, other studies proved that it can 

also have an important role as on the one hand 

congestion is more likely and on the other hand 

delays could be compensated along a longer route. 

In this study there was not a big difference between 

the distances of the analysed routes and that might 

be a reason why length has not proved to be a 

significant factor. 

Alternatively, other TTR forecast models were 

tested on the available dataset. This required another 

approach of analysis as most of the other methods 

are using mean delay (ratio of mean travel time and 

free-flow travel time) as an explanatory variable for 

standard deviation. The study of Eliasson (2006) 

seemed to be especially interesting to compare the 

results with. So based on its method, our daily data 

was split into 30-minute time periods. One can note 

that Eliasson used a 15-minute interval based on the 

implicit assumption that travellers base their 

decisions on this ‘time resolution’. However, due to 

the measurement intervals previously mentioned, 

only a 30-minute split was possible. Applying this 

splitting, 672 data points could be created for the 

same 14 workdays we analysed before. 

Analysing the relationship of absolute standard 

deviation and mean travel time as well as relative 

standard deviation (standard deviation divided by 

mean travel time) and relative increase in travel time 

(travel time divided by free flow travel time minus 

1), the same findings can be found as by Eliasson 

(see Figure 7): 

- standard deviation in absolute terms tends to 

increase with travel times; 

- relative standard deviation increases with 

congestion but decreases for higher congestion 

levels. 

A comparison of forecast methods was also carried 

out based on mean delays calculated by the 

calibrated VDF for each 5% F/C group as it would 

be normally measured during a project assessment. 

After some calibration model fit was adequate for all 

methods with R2 values around 0.7. Only the NZTA 

model showed a lower value of 0.55. Results are 

illustrated by Figure 8 and they show that the 

method developed on the Budapest case has the best 

fit with a 1.5 sum of squared differences. The other 

models are slightly underestimating the standard 

deviation for lower F/C values and sums of squared 

differences are in the range from 1.9 to 2.2. It does 

not mean that the proposed model is universally 

better as the proposed model was designed based on 

the Budapest case and it is not surprising that it has 

the best fit. However, the results show that TTR can 

be forecasted based purely on the saturation level 

with similar accuracy to the existing models that 

predicts TTR based on mean-delay. 
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Fig. 7. The relationship of standard deviation and travel time (route no. 4) – each dot representing a 30-minute 

time interval 

 

 
Fig. 8. Comparison of TTR forecast models (route no. 4) 

 

5. Conclusion 

Assessment of TTR as a fundamental factor in travel 

behaviour has become an important aspect in both 

transport modelling and economic appraisal. 

Improved reliability could provide a quite 

significant economic benefit if it is calculated in 

CBAs for which the theoretical background has 

already been set (definition of VOR). However, 

methods to forecast TTR as well as travel behaviour 

models including TTR effects are rather scarce and 

there is a need for development. Another important 

aspect could be the influencing factor of reliability 

in travel demand management and related policy-

making as restrictive road projects (e.g. traffic 

calming projects) might decrease TTR in the whole 

transport system which besides the positive effects 
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of these interventions could mean an undesirable 

loss for the society. In addition to these, forecasting 

TTR might present new opportunities in the 

provision of real-time traffic information. Therefore, 

this paper aimed to analyse reliability, focusing 

exclusively on urban road transport as it is presumed 

that the issue is mostly significant in this setting. 

However, it is quite likely that assessment of TTR 

can be relevant in other settings such as long-

distance or public transport trips as well. 

This research pointed out that besides existing 

mean-delay-based models, TTR can be forecasted 

based on the volume-capacity ratio with adequate 

accuracy. The novelty of this result is that the issue 

of interdependence (endogeneity) of previous 

models can be resolved. Then it becomes possible to 

forecast TTR independently of travel time (or mean 

delay) which makes it easier to include TTR in travel 

behavioural models. 

However, due to the limitations of travel time 

measurements and data (detailed in section 3.2) the 

proposed model and all of the results are based on 

route-level analyses with certain constraints (e.g. to 

use the maximum F/C value to characterise the 

saturation level of the route). In spite of the facts that 

(1) in another paper of the authors the validity of the 

speed-flow function was proved for urban routes and 

(2) other functions that forecasting TTR on a link-

level provides very similar results, the proposed 

model is only valid for the route-level and not 

necessarily valid for its shorter sections (links) with 

different technical parameters. It should be noted 

that routes may consists of different link types and 

TTR at given F/C ratios might vary greatly across 

these types. However, the result of this paper 

suggests that the base model described in section 4 

could still be used with proper calibration in 

appraising urban road projects. 

Anyway, as a consequence of the shortcomings of 

this research, it should be also stressed that further 

analyses would need to check the validity and the 

universality of the results. Providing that sufficient 

data was available, it would be preferred to do the 

estimations on a link-level and to assess the 

difference between cities, road types, seasons, days, 

etc. Plus, a following further research might be able 

to develop TTR forecasting methods for urban 

public transport trips and cycling. 
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