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Abstract: 
 

Vehicle delay and stops at intersections are considered targets for optimizing signal timing for an isolated intersection to 

overcome the limitations of the linear combination and single objective optimization method. A multi-objective optimization 
model of a fixed-time signal control parameter of unsaturated intersections is proposed under the constraint of the 

saturation level of approach and signal time range. The signal cycle and green time length of each phase were considered 

decision variables, and a non-dominated sorting artificial bee colony (ABC) algorithm was used to solve the multi-objective 
optimization model. A typical intersection in Lanzhou City was used for the case study. Experimental results showed that 

a single-objective optimization method degrades other objectives when the optimized objective reaches an optimal value. 

Moreover, a reasonable balance of vehicle delay and stops must be achieved to flexibly adjust the signal cycle in a 
reasonable range. The convergence is better in the non-dominated sorting ABC algorithm than in non-dominated sorting 

genetic algorithm II, Webster timing, and weighted combination methods. The proposed algorithm can solve the Pareto 

front of a multi-objective problem, thereby improving the vehicle delay and stops simultaneously. 
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1. Introduction 

Urban traffic problems have increasingly worsened 

given the increase in urban vehicle numbers and 

negative effects of vehicle energy consumption and 

exhaust emissions on the environment. Signalized 

intersections are an unfavorable critical node of a 

road network. Signal timing scheme, as the basic 

unit of urban traffic control, is reasonable or not, 

thus significantly influencing the safety and effi-

ciency of a traffic flow (Biswas, S. et al., 2017; 

Kadziolka, T., and Kowalski, S., 2014). The imple-

mentation of a scientific and reasonable signal tim-

ing control at intersections is an effective method for 

relieving numerous traffic problems (Yu, C. et al., 

2017). Therefore, researching a signal timing opti-

mization method improves traffic efficiency, and en-

vironmental pollution is practically significant. 

Many methods, such as transport and road research, 

highway capacity manual, Sydney coordinated 

adaptive traffic system, and split cycle offset optimi-

zation technique methods, have been applied to im-

prove the comprehensive efficiency of traffic con-

trol. 

Webster, F. V. et al. (1958) established a steady-

state stochastic delay model that is extensively used 

in unsaturated traffic flow. Scholars (e.g., Fawaz, W. 

et al., 2016) have selected the average vehicle delay 

as an optimization target for researching signal tim-

ing method. Cheng, C. et al. (2016) proposed a 

method for the bias of theoretical delay estimation. 

Numerous scholars have also become aware of the 

importance of vehicle queue length, vehicle stops, 

traffic capacity, energy consumption, and exhaust 

emissions for signal control at intersections. Lu, B. 

and Niu, H. M. (2010) analyzed the stochastic char-

acteristics of traffic flow at isolated intersections, 

studied the deviation of the queue length of phase 

vehicles that correlate to the expected queue length, 

and suggested an optimization model for signal tim-

ing. Rakha, H. et al. (2001) reviewed state-of-the-

practice models for estimating the number of vehicle 

stops at signalized intersections and then introduced 

two approaches for calculating the number of vehi-

cle stops at unsaturated and oversaturated signalized 

intersections. A microscopic model was used in the 

former approach to compute the instantaneous par-

tial and full stops under unsaturated and oversatu-

rated conditions by using second-by-second speed 

measurements. The latter model is an analytical for-

mulation that is derived from the proposed micro-

scopic model that computes the number of vehicle 

stops for oversaturated approaches over a given 

analysis period. Wu, N. and Giuliani, S. (2016) pro-

posed a model for estimating the performance of an 

existing signalized intersection under unsaturated 

flow condition based on cycle overflow probability 

and flow volume; the cycle overflow probability and 

cycle overflow can be directly measured by loop de-

tectors at stop lines; thus, the capacity can be esti-

mated on the basis of queuing theory. The results in-

dicated that the model is theoretically reasonable 

and easy to use. Liao, T. Y. et al. (1998) developed 

an aggregate model for estimating intersection fuel 

consumption and investigated the influences of sig-

nal timing on fuel consumption. Liao, T. Y. (2013) 

proposed a fuel-based signal optimization model and 

verified through numerical experiments that the per-

formance of the fuel-based signal optimization 

model is improved in terms of fuel consumption and 

CO2 emissions. Lv, J. P. et al. (2013) focused on a 

trade-off between delay and emissions based signal 

optimization; in their study, a methodology was first 

developed for drive vehicle profiles, and a motor ve-

hicle emission simulation was applied to estimate 

emissions given a macroscopic input; in addition, 

these authors developed and solved an optimization 

methodology for signal timing through a genetic al-

gorithm; the air quality benefit by reducing vehicle 

emissions using an intersection signal control was 

demonstrated through a case study, and the quality 

benefit from the intersection signal control was dis-

cussed under various scenarios of cycle lengths, per-

centages of turning vehicles, and traffic demands on 

major/minor roads.  

The aforementioned studies have shown that inter-

section signal timing can simultaneously affect dif-

ferent control targets. The purpose of intersection 

controls has gradually developed from a single ob-

jective to traffic efficiency, security, and environ-

mental protection given the development of urban 

traffic control. Yang, J. et al. (2000) considered a 

two-phase signalized intersection as the study target 

and used a gray correlation analysis based on gray 

control theory to study the gray correlation between 

signal cycle time and vehicle delay, stops, and queue 

length. The results indicated that vehicle delay, 

stops, and queue length at intersections exhibit a sig-

nificant gray correlation with signal cycle time; thus, 

a new theoretical approach to developing a class of 
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dual-objection programming timing model, which 

aims to minimize vehicle delay and stops simultane-

ously, was proposed. Li, Y. et al. (2013) suggested a 

multi-objective optimization algorithm for traffic 

signal control. Throughput maximum and average 

queue ratio minimum were selected as the optimiza-

tion objectives of the traffic signal control under an 

oversaturated condition. The simulation results 

showed that the signal timing plan generated by us-

ing the proposed algorithm is more efficient in man-

aging traffic flow at an oversaturated intersection 

than using the commonly utilized signal timing op-

timization software Synchro; the proposed algo-

rithm can search the Pareto front of a multi-objective 

problem domain under normal and oversaturated 

conditions. Yu, D. et al. (2016) considered the entire 

operation efficiency of the intersection comprehen-

sive traffic capacity, vehicle cycle delay, cycle stops, 

and exhaust emission and selected these factors as 

optimization goals to establish a multi-objective 

function; a fuzzy compromise programming ap-

proach was used to provide different weight coeffi-

cients to various optimization objectives that convert 

the multi-objective function to a single-objective 

function; the genetic algorithm was used to obtain 

the optimized signal cycle and effective green time. 

The simulation results indicated that the proposed 

method can reduce vehicle delays, stops, and traffic 

capacity effectively. Gao, Y. F. et al. (2011) pro-

posed a multi-objective optimization model called 

non-dominated sorting genetic algorithm II (NSGA 

II) for unsaturated intersections and solved the 

multi-objective optimization problems. These au-

thors analyzed the validity of common objectives, 

such as average vehicle delay, stops, and queue 

length to signal control parameters. The results 

showed that the multi-objective optimization 

method can obtain improved comprehensive traffic 

benefits.  

In summary, the research on multi-objective optimi-

zation of signalized intersections has become ade-

quate recently. However, most of the optimization 

algorithms are based on NSGA II, and the use of 

other algorithms are rare. Therefore, a multi-objec-

tive optimization model, which focuses on vehicle 

delay and stops, is proposed in the present study un-

der several constraints. The method presented uses 

the vehicle delay and stops as optimization targets, 

and the model is solved by non-dominated sorting 

artificial bee colony (ABC) algorithm. First, the pre-

sent study determines the calculation method of ve-

hicle delay and stops through a steady-state uniform-

arrival analysis method of vehicle flow established 

by Webster because the research object in the pre-

sent study is an isolated unsaturated intersection 

(Webster, F. V. and Cobbe, B. M. 1966; Cronje, W. 

B., 1983). Second, the non-dominated sorting ABC 

(NSABC) algorithm is used to solve the model be-

cause this algorithm has better convergence than the 

genetic algorithm (Szczepański, E. et al., 2014; Zou, 

W. P. et al., 2011; Taraska, M., and Iwańkowicz, R., 

2017). Finally, a typical intersection in Lanzhou 

City is selected as a case study. The results demon-

strate that the signal timing that was optimized in 

this study can effectively reduce vehicle delays and 

stops. 

The remainder of this paper is organized as follows. 

The multi-objective optimization model at a signal-

ized intersection is introduced in Section 2. An 

NSABC algorithm is discussed in Section 3. In Sec-

tion 4, the proposed method is analyzed and com-

pared by selecting a typical signalized intersection 

in Lanzhou, China. The conclusions drawn from this 

study are presented and summarized in Section 5.  

 

2. Multi-objective optimization model 

2.1. Optimization objective selection 

Many scholars believe that the main goal of urban 

traffic control is to organize all kinds of traffic flow 

orderly and efficiently. However, urban traffic prob-

lems have developed from traffic jams and accidents 

to environmental pollution and energy consumption. 

Yang, J. et al. (2010) conducted a systematic study 

on the target of a traffic signal control system; the 

research showed that the targets of the traffic signal 

control should consider different benefit indexes, 

such as vehicle delay, vehicle queue length, traffic 

capacity, vehicle stops, pedestrian delays, fuel con-

sumption, pollutant emissions, and noise pollution, 

and the different targets should be weighted differ-

ently in accordance with the various traffic condi-

tions. 

Wu, L. N. et al. (2015) analyzed the changing regu-

lation of vehicle energy consumption at signalized 

intersections; the results showed that vehicle delay 

and stops clearly influence the energy consumption 

of a vehicle. Therefore, their study considered the 

influence of signal timing on vehicle delay and stops 

http://xueshu.baidu.com/s?wd=author:(Emilian%20Szczepa%C5%84ski)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(Remigiusz%20Iwa%C5%84kowicz)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
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but ignored pedestrian delays. Therefore, the mini-

mum vehicle delay and stops are selected as optimi-

zation objectives.  

 

2.2. Objective function 

The vehicle delay and stops at the intersection are 

selected as the control targets by using the unsatu-

rated intersection as the research object. The purpose 

of optimization is to minimize the control targets in 

a signal cycle. 

Webster, F. V. et al. (1958) established a steady-

state stochastic delay model that is still widely used 

for unsaturated traffic flow. The vehicle arrival rate 

at the analysis interval is assumed to remain stable 

and typically follow a Poisson distribution. In addi-

tion, Webster developed the analysis of vehicle de-

lay by using a steady-state stochastic delay model. 

The Webster delay model considers the steady-state 

uniform arrival and random delays of the vehicle 

flow in the unsaturated state, and the vehicle delay 

can be calculated as follows: 
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where d  denotes the average delay for all vehicles 

at the intersection approach, c  is the cycle time of 

the signalized intersection, g  is the effective green 

time, q  is the vehicle arrival rate of the intersection 

approach, and x  is the saturation level of the inter-

section approach. x  can be obtained as follows 

(Webster, F. V. et al., 1958): 
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where s  denotes the saturation flow of the intersec-

tion approach. The average delay of all controlled 

vehicles at the intersection can be easily obtained 

and calculated as follows:  
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where 
1Z  denotes the average delay for all vehicles 

at the intersection, n  is the number of intersection 

approaches, 
iq  is the vehicle arrival rate of the i th 

approach, and 
id  is the average delay of the i th ap-

proach. 

Owing to the control of the intersection signal, sev-

eral of the vehicles that traverse the intersection de-

celerate and stop to wait and then accelerate again to 

leave the intersection. Thus, another objective func-

tion of the optimization model in the present study 

is the vehicle stops at the intersection. The vehicle 

stops at the intersection approach in a cycle can be 

modeled in accordance with Webster’s calculation 

method without considering the incomplete stop 

(Quan, Y. S., 1989). We can obtain the vehicle stops 

at the intersection approach as follows: 
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where R  denotes the vehicle stops at the intersec-

tion approach, and the other variables are the same 

as above.  

Thus, the average stops for all controlled vehicles at 

the intersection can be obtained as follows: 
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where 
2Z  denotes the vehicle stops at the intersec-

tion, 
iR  is the vehicle stops of the i th approach, and 

the other variables are the same as above. 

 

2.3. Constraint condition 

2.3.1. Constraint of the saturation level 

The present study considers the unsaturated intersec-

tion as the research object, and Webster’s steady-

state stochastic delay model is used to analyze the 

vehicle delay and stops at the intersection. Thus, 

considering the saturation level of the intersection at 

the time of signal timing is necessary to ensure the 

validity of the model analysis. This study shows that 

Webster’s model has a favorable applicability when 

the saturation level of the approach is satisfied 
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0.9ix   (He, J. J., and Hou, Z., 2012). Therefore, 

the model of the present study requires the saturation 

level to also satisfy the abovementioned condition. 
 

2.3.2. Constraint of pedestrian crossing 

We should fully consider the shortest time of the pe-

destrian pass through at the intersection with signal 

timing. Otherwise, a phase of pedestrians cannot 

pass through the intersection during the green time, 

thereby affecting traffic safety and efficiency (Ma, 

W. J., et al., 2015). Therefore, the green time of each 

phase is satisfied 
jg t , where t  denotes the short-

est time of the pedestrian, pass through the intersec-

tion to avoid the fact that pedestrians cannot safely 

cross the road. 
 

2.3.3. Constraint of signal cycle 

In the traffic control, the signal cycle should be flex-

ibly controlled in accordance with traffic flow. In 

general, the signal cycle setting is relatively brief to 

reduce the vehicle delay when the traffic flow is low. 

However, a signal cycle that is excessively brief will 

result in vehicles and pedestrians being unable to 

safely pass through the intersection. Signal cycle set-

tings are extended to improve the traffic capacity of 

the intersection when the traffic flow is heavy. How-

ever, drivers and pedestrians cannot stand and will 

violate the signal rules when the signal cycle is ex-

cessively extended. Thus, to implement traffic con-

trol scientifically, studies have shown that the signal 

cycle should satisfy 15 200m C  , where m  de-

notes the number of signal phase. 

 

2.4. Multi-objective optimization model 

Owing to the above analysis, the signal cycle C  and 

green time jg of each phase are used as decision 

variables, and the multi-objective optimization 

model for signalized intersection is as follows: 
 

min  
1 2( , )Z Z Z= ,  (6) 

 

. .s t  0.9ix  ,  (7) 
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where i  denotes the intersection approach, j  is the 

signal phase, and l  is the loss time per cycle. Eq. (6) 

minimizes the average delay and stops at the inter-

section simultaneously. Eq. (7) is the constraint of 

saturation level per intersection approach. Eq. (8) is 

the constraint of the pedestrian that passes through 

the intersection. Eq. (9) is the constraint of the signal 

cycle. Eq. (10) constrains the sum of the signal loss 

time, and the green time of each phase is equal to the 

signal cycle. 
 

3. Algorithm selection and design 

3.1. Selection of the algorithm 

The average delay and stops of a vehicle provide dif-

ferent mapping relationships with signal timing pa-

rameters. Thus, the proposed model is a typical 

multi-objective optimization problem. The ABC al-

gorithm is a new group of intelligent algorithms that 

are developed by Karaboga on the basis of simulat-

ing the foraging behavior of a honey bee swarm. The 

ABC algorithm has been attracting considerable at-

tention because it has fewer control parameters and 

has better search performance than other intelligence 

algorithms. Zou, W. P. (2011) demonstrated that the 

multi-objective ABC algorithm has higher search 

performance than other multi-objective algorithms, 

such as multi-objective genetic and multi-objective 

particle swarm algorithms. Therefore, we select the 

multi-objective ABC algorithm to solve the model. 
 

3.2. Related concepts 

The following definitions are presented in accord-

ance with the previous study (Zou, W. P. et al., 

2011): 
 

Definition 1. 
1X  dominates 

2X  is expressed as 

1 2X X . For the minimum optimization problem, 

if and only if 1 2( ) ( )j jf X f X , 1,2, ,j M= , and 

1 2( ) ( )j jf X f X , then {1,2, , }j M  . 
 

Definition 2. If the individual 
iX  is a non-domi-

nated individual in the population W , if and only if 

jX W  , then j iX X . 
 

Definition 3. Let { | ; , }i j i i jP X X X X X W=   , 

then P  is called Pareto optimal. Pareto optimal so-

lutions are also called efficient, non-dominated, and 

non-inferior solutions. 
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Definition 4. For the individual 
iX , which belongs 

to population W , 
iNP  denotes the number of indi-

viduals, which dominate 
iX . Then, the individuals 

with the same NP  values have the same Pareto lev-

els. 
 

Definition 5. Individuals of the same Pareto rank are 

sorted by the value of each objective function. For 

each individual 
iX , the distance between 

1iX +
 and 

1iX −
 is calculated in accordance with each objective 

function, and the crowded distance of the individual 

iX  is obtained by summarizing the calculated re-

sults. 
 

Definition 6. Excellent individuals have a low Pa-

reto rank, whereas improved individuals have a re-

markable crowded distance when the Pareto rank is 

equal. 

 

3.3. Original ABC algorithm 

The ABC contains three groups, namely, employed, 

onlooker, and scout bees. The numbers of employed 

and onlooker bees are equal. Each food source rep-

resents a potential solution to the optimization prob-

lem. Each employed bee can only be attached to a 

food source, and each food source can only be at-

tached to an employed bee. The employed bees ex-

ploit the food source, carry the information about the 

food source back to the hive, and share this infor-

mation with the onlooker bees. The onlooker bees 

select an excellent food source for exploitation. If a 

food source is adequate, then it can attract additional 

onlooker bees. Similarly, a food source may not be 

exploited by any onlooker bee. The scout bee ran-

domly finds a new source in the global search space 

when a food source is exhausted. The ABC algo-

rithm will achieve the optimal food source in the 

global search space through the collaboration of the 

three bee groups. If a bee group is searching in a D-

dimensional space, then all food sources can be ex-

pressed as the set 

1 2{ ( , , , ) | 1,2, , }i i i iDX x x x x i SN= =  =   ,  

where SN  denotes the number of food sources, 

which are equal to the number of employed and on-

looker bees. The onlooker bees select a food source 

in accordance with the probability that is propor-

tional to the quality of such food source when all 

food sources have been exploited by the employed 

bees. Thus, favorable food sources attract more on-

looker bees than unfavorable food sources. The 

scout bee will discard the food source and randomly 

find a new source in the global search space when a 

food source is not renewed in continuous limit  

times by the employed and onlooker bees; thus, the 

algorithm can be prevented from falling into the lo-

cal optima. A detailed description of the standard 

ABC algorithm is as follows: 

The ABC algorithm is the first to initialize food 

sources and the value of a limit . The search space 

of the algorithm is determined in accordance with 

the actual optimization problem, and Eq. (11) is used 

as the initialized food sources. 
 

min (0,1)(max min )ij j j jx rand= + − ,
 

 (11) 

 

where 1,2,i SN=   , 1,2,j D=   , D  is the dimen-

sional of the search space, max j  and min j  corre-

spond to the maximum and minimum of the j th di-

mensional, and (0,1)rand  is a random number be-

tween the uniformly distributed (0,1). Simultane-

ously, the maximum stagnation times of the food 

sources are determined. A large value will affect the 

breadth search capabilities of the algorithm, and a 

small value will affect the depth search capabilities 

of the algorithm. 

At the employed bee stage, each food source will be 

exploited by all the employed bees, and the ABC al-

gorithm is expressed as follows: 
 

1 2{ , , , (-1,1)

( ), , }

i i i ipara

ipara kpara iD

V x x x rand

x x x

=    +

−   
,
  

(12) 

 

where 
iV  is a new food source obtained from the old 

one 
iX , para  is a random number in the range 

(1,D), (-1,1)rand  is a random number in the range 

(-1,1), 
kX  is the randomly selected food source, and 

iparax  and kparax  correspond to the attribute values of 

the para th dimensional of 
iX  and 

kX . Further-

more, determining whether to retain 
iV  in accord-

ance with the greedy rules is necessary. If 
iV  is bet-

ter than 
iX , then 

iX  is discarded, and the stagna-

tion number of 
iV  is reset to 0. However, if 

iV  is not 
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better than 
iX , then 

iV  is discarded, and the stagna-

tion number of 
iX  should be added by 1. 

At the onlooker bee stage, an onlooker bee selects a 

food source depending on the probability value 
ip  

that is associated with such food source; 
ip  is cal-

culated by using the following equation: 

 

1

i
i SN

j

j

fit
p

fit
=

=


,  (13)

  

 

where 
ifit  is the fitness of food source i . If the fit-

ness of the food source is high, then the probability 

of being selected is high. In the minimum optimiza-

tion problem, the target function value of the food 

source must be converted into the fitness value. The 

onlooker bee searches for the new food source from 

the selected food sources in accordance with Eq. 

(12). Greedy rules are also used to decide whether to 

retain new food sources or not. If the new food 

source is better than the old food source, then the old 

one will be replaced by the new food source. Other-

wise, the new food source should be discarded. 

At the scout bee stage, if the maximum number of 

stagnation times for all food sources is greater than 

the limit , then the food source is discarded. New 

food sources are randomly generated in the global 

search space. The scout bee in each iteration can 

only evolve the food source with the maximum num-

ber of stagnation times because the number of scout 

bees is 1. The flow of the ABC algorithm is illus-

trated in Figure 1. 

 

3.4. Multi-objective ABC algorithm 

In accordance with the non-dominated sort defini-

tion and ABC algorithm, the NSABC algorithm is 

applied as follows: 

Step 1. Randomly produce SN  food sources, and 

constitute a candidate solution set W . 

Step 2. The employed bees evolve each candidate 

solution of the candidate set W  in accordance with 

Eq. (12), and the generated new candidate 
iV  is rec-

orded in the set T , 
iT T V=  . 

 

 

Start

Initialize the food sources in accordance 

with Eq. (11) and determine the limit value.

Employed bees exploit the food source in 

accordance with Eq. (12).

All employed bees are 

finished.

Determine whether to retain new food 

source in accordance with the greedy rules.

Calculate the probability value for all the 

food sources. 

No

Onlooker bees exploit the food source  in 

accordance with Eq. (12).

Determine whether to retain new food source  in 

accordance with the greedy rules.

All onlooker bees are 

finished.

The scout bee chooses a food source to be 

processed and performs a random search.

The end condition is satisfied.

End

No

No

Yes

Yes

Yes

 
Fig. 1. Flowchart of the ABC algorithm
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Step 3. Let T T W=  , and sort individuals of the 

set T . All candidate solutions in W  are replaced by 

the first SN  candidate solutions in T . Then, the set 

T is emptied. 

Step 4. Calculate the probability value 
ip  of all can-

didate solutions in W in accordance with Eq. (14). 

All onlooker bees use the roulette method to select 

the candidate solutions, which have a high 
ip  to 

evolve in accordance with Eq. (12), and the gener-

ated new candidate 
iV  is recorded in the set T , 

iT T V=  . 

min( )

max( ) min( )

i i
i

i i

D D
P

D D

−
=

− −
, (14) 

where 
iD  denotes the number of solutions to be 

dominated by the candidate solutions 
ix . 

Step 5. Execute the same operation as Step 3. 

Step 6. The scout bee processes the individual in the 

candidate set T . 

Step 7. If the algorithm satisfies the end condition, 

then select all non-dominated solutions in the candi-

date set W  as Pareto solutions. Otherwise, return to 

Step 2.  

 

4. Case study 

A typical intersection in Lanzhou City is selected to 

verify the effect of the proposed method. The inter-

section has four approaches, and the geometrical 

characteristic is depicted in Figure 2. This intersec-

tion has three phases. The first phase is used to re-

lease the straight, right, and left traffic flows in the 

eastern and western approaches. The second phase 

is used to release the straight traffic flow in the 

southern and northern approaches. The third phase 

is used to release the left traffic flow in the southern 

and northern approaches. The straight traffic flow in 

the southern and northern approaches is not subject 

to signal control. For 10 consecutive days, the traffic 

flow between 10 and 11 AM was investigated. The 

average traffic flow of each approach is displayed in 

Table 1. 

 

1 2 3 4

1234

1

2

1

2

N

 
Fig. 2. Geometric configuration of an intersection 

 

On the basis of an actual survey, Shao, C. Q. et al. 

(2011) analyzed the factors that influence the satu-

ration flow of the intersection. The saturation flow 

of each lane is set at the intersection as presented in 

Table 2. Similarly, the parameters t, vr, a1, a2, 

1 2 3 4, , ,f f f f  are set as 20 s, 48 km/h, -1.56 m/s2, 

1.14 m/s2, 0.31 ml/s, 1.34 ml/s, 0.28 ml/s, and 0.64 

ml/s, respectively. The optimization model can be 

solved by investigating traffic data and setting pa-

rameters. However, the NSABC algorithm is se-

lected to solve the model using VC ++6.0 to obtain 

the Pareto solution set of this model because the pro-

posed model is a typical multi-objective optimiza-

tion problem. 

 

Table 1. Traffic flow of the lanes (pcu/h) 

Approach Eastern Western Southern Northern 

Lane 1 2 1 2 1 2 3 4 1 2 3 4 

Traffic volume 295  432  468  324  180  266  274  173  205  263  241  324  

 

Table 2. Saturation flow of the lanes (pcu/h) 

Approach Eastern Western Southern Northern 

Lane 1 2 1 2 1 2 3 4 1 2 3 4 

Saturation flow 1368 1402 1488 1539 1454 1656 1656 1506 1505 1620 1620 1420 
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4.1. Analysis of the convergence process 

The population size SN = 100 and iteration  

G = 400 in the ABC algorithm are set. The conver-

gence results are demonstrated in Figure 3(a) after 

completing the experiment. From the convergence 

results, the number of non-dominated solutions in 

the candidate solution is 82, and the dispersion of the 

solution is uniform. The figure exhibits that the ABC 

algorithm can solve the model. The results of con-

vergence comparison through various algorithms 

with different iteration G  and iterations are illus-

trated in Figure 3 to verify the improved conver-

gence efficiency of the ABC algorithm.  
 

a) 

 
b) 

 
c) 

 
d) 

 
Fig. 3. Convergence results under various SN and G 

values:  

(a) 100SN =  and 400G = ;  

(b) 100SN =  and 300G = ;  

(c) 100SN =  and 200G = ;  

(d) 100SN =  and 100G =  

Figure 3 displays that the ABC algorithm can obtain 

the optimal solution quickly. In the case of different 

iterations, the algorithm results and the Pareto fron-

tier are relatively close. The number of non-domi-

nated solutions obtained by the four algorithms is 

82, 79, 65, and 61. The number of iterations of the 

algorithm clearly influences the number of non-

dominated solutions, and the effect on the Pareto 

frontier is unclear. The results demonstrate that the 

ABC algorithm can effectively solve the model. 
 

4.2. Analysis of the influence of signal cycle on 

control targets 

The control parameters mainly include signal cycle 

and green signal ratio for the signal control of the 

isolated intersection. The influence of signal cycle 

on traffic benefit is more apparent than the green sig-

nal ratio. Therefore, this study focuses on analyzing 

the influence of the signal cycle on each control tar-

get. We select the convergence results with SN = 100 

and G = 400 for analysis. The correlation between 

vehicle delay and signal cycle is depicted in Figure 

4, and the correlation between vehicle stops and sig-

nal cycle is demonstrated in Figure 5. 

In Figures 4 and 5, the signal cycle range of the Pa-

reto is set to 70–200 s. In this range, the average de-

lay of all vehicles at the intersection increases with 

the signal cycle given the extended waiting time of 

vehicles at signalized intersections, and the vehicle 

stops decrease nearly linearly with the increase in 

the signal cycle. From the Pareto solution set, the 

range of vehicle delay is 22–43 s, and the vehicle 

stop range is 0.74–0.88.  

Vehicle delay and stops are conflicting control tar-

gets, and the effective optimization of timing param-

eters can achieve a reasonable balance of control tar-

gets. The experimental results show that the vehicle 

delay is brief, but the vehicle stop is lengthy when 

the signal cycle is short. The vehicle stops decrease 

continuously, but the vehicle delay increases with 

the signal cycle. Figures 4 and 5 exhibit that one con-

trol target is excellent, but the other target is unfa-

vorable when the signal cycles are 70–90 and  

160–200 s. A target is slightly improved without re-

gard for a substantial increase in the other target. A 

change in the signal cycle can lead to improvements 

in a target when the signal cycle is 90–160 s. How-

ever, the negative benefits of the other target are ac-

ceptable. We can achieve a reasonable balance of 

vehicle delay and stops through the flexible adjust-

ment of the signal cycle in this range.
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Fig. 4. Correlation between vehicle delay and signal cycle 

 
Fig. 5. Correlation between vehicle stops and signal cycle 

 

4.3. Comparison with other algorithms 

The proposed algorithm is compared with other al-

gorithms in this section to further illustrate the ad-

vantages of the NSABC algorithm. The proposed 

model is a multi-objective optimization model. The 

non-dominated sorting genetic algorithm, which is 

widely used in the traffic field, is applied to solve the 

NSGA II model. Furthermore, a linear weighted 

method is used to transform the multi-objective op-

timization model that is proposed in this study into a 

single objective optimization model, which is solved 

by the standard ABC algorithm called ABC. Based 

on the vehicle delay and stop model proposed by 

Webster, the signal control targets of an intersection 

are established in this study. Thus, the Webster sig-

nal timing method is selected to compare the signal 

timing algorithm, which we call Webster. First, we 

can compare the NSABC with the NSGA II. The 

population size SN  and iteration G  in the NSABC 

and NSGA II are set to 100 and 400, respectively. 

The crossing and mutation rates of the NSGA II are 

set to 0.8 and 0.1, correspondingly. The convergence 

results of the two algorithms are relatively close but 

exhibit differences. In this study, the convergence of 

the two algorithms is more dominant than their Pa-

reto solution set. We can conclude that the algorithm 

has an improved convergence performance. The 

domination number of the convergence result of an 

algorithm is determined by the convergence result of 

another algorithm. The convergence performances 

of the two algorithms are compared to solve the Pa-

reto front. The comparison results of the two algo-

rithms are summarized in Table 3. 

Table 3 presents that the convergence of the NSABC 

dominates the convergence of the NSGA II, and the 

dominance result is 14. However, the convergence 

of the NSGA II dominates the convergence of the 

NSABC, and the result is 2. The dominance results 

show that the convergence performance of the 

NSABC is better than the NSGA II. Thus, selecting 

the NSABC algorithm to solve the model is reason-

able. 

 

Table 3. Comparison results of the two algorithms 

Dominance  
relation 

NSABC domi-
nance NSGA II 

NSGA II domi-
nance NSABC 

Dominance result 14 2 
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Furthermore, the timing results of the NSABC are 

compared with ABC and Webster. The population 

size SN  and iteration G  of ABC are set to 100 and 

400, respectively, because ABC and Webster can 

only provide a timing result. However, the NSABC 

provides a non-inferior set. Thus, a reasonable 

mechanism must be adopted to select reasonable 

timing results from the solution set. On the basis of 

the previous analysis, this study selects any solution 

randomly from the reasonable part of the non-infe-

rior solution set and compares this solution with 

ABC and Webster. The comparison results are re-

flected in Table 4. 

 

Table 4. Timing results of the different algorithms (s) 

Algo-
rithm 

Phase 
1 

Phase 
2 

Phase 
3 

Cycle Delay Stops 

NSABC 74 24 20 127 31.56 0.76 

ABC 63 32 25 114 33.08 0.79 

Webster 20 11 9 49 14.53 0.86 

 

Table 4 summarizes the timing results of the three 

algorithms that demonstrate obvious differences. 

The Webster method does not consider the con-

straints of the model. The analysis from the angle of 

vehicle delay, timing results of the Webster algo-

rithm, NSABC algorithm, and ABC algorithm be-

come increasingly unfavorable. The analysis from 

the angle of vehicle stops and timing results of the 

NSABC, ABC, and Webster algorithms also become 

increasingly unfavorable. Overall, the timing results 

of the NSABC are relatively reasonable, and the two 

control targets, namely, vehicle delay and stops, are 

balanced. The timing results of the Webster algo-

rithm based on the delay minimization of vehicle 

stops are disregarded. The ABC method considers 

the two objectives. The timing results are relatively 

acceptable, but the results are dominated by the 

NSABC algorithm. Based on the above analysis, we 

can conclude that the comprehensive traffic benefit 

obtained by the NSABC algorithm is enhanced. 

 

5. Conclusion 

In this study, we considered the delay and stops of 

vehicles that traverse intersections and proposed a 

multi-objective optimization model of a fixed-time 

signal control parameter of the unsaturated intersec-

tion. The signal cycle and green time length of each 

phase were used as decision variables under the con-

straint of the saturation level of the approach and 

signal time range, and a typical intersection in Lan-

zhou City was selected as the case study on the basis 

of the NSABC algorithm for solving a multi-objec-

tive optimization model. The effectiveness of the 

proposed algorithm was verified from different per-

spectives on the basis of the actual survey data. The 

proposed algorithm was verified to possess favora-

ble convergence by setting different parameters of 

the algorithm. The influence of the signal cycle on 

the control targets was analyzed on the basis of the 

convergence results of the algorithm. At a certain 

range, the vehicle delay will increase with the signal 

cycle, but the stops will decrease. The vehicle stops 

increase, whereas the delay will be reduced with the 

signal cycle. We analyzed the Pareto front and de-

termined that the conflict targets can be effectively 

balanced only when the signal cycle changes at a 

reasonable range. However, a target slightly im-

proves without regard for a substantial increase in 

the other target when the signal cycle is beyond the 

reasonable range. The proposed algorithm was com-

pared with other algorithms, that is, the NSGA II, 

ABC, and Webster algorithms. The Pareto frontier 

obtained by the proposed method is superior to the 

NSGA II. Furthermore, the proposed algorithm can 

achieve better comprehensive traffic benefit than the 

other two algorithms. However, this study disre-

gards the method for formulating the signal timing 

in accordance with the Pareto set, and only a reason-

able range of decisions is provided. Further research 

will be conducted on the decision-making method in 

accordance with Pareto sets on the basis of the actual 

traffic and preference of decision makers. 
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