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Abstract: 

Vehicles entering from on-ramps can increase the speed dispersion of the mainline and induce frequent changing lanes 

or acceleration and deceleration behaviors. These complex traffic behaviors interfere with traffic on the mainline and 
thus result in congestion and safety issues. Reasonable management and control of ramps, especially on-ramps, has 

been proven to be an effective solution for traffic congestion caused by ramp traffic flow. Understanding the influence 

of traffic flow of on-ramps on the average speed of the freeway mainline is useful for creating effective ramp manage-
ment strategies. In this study, field tests were employed to gather traffic flow data on some typical basic freeway 

interchanges in China. As it is difficult to obtain the required traffic conditions only through field tests, the VISSIM 

traffic simulation model was also utilized. The same set of field data was used in VISSIM and the driver behavior 
model parameters CC0 (standstill distance between vehicles) and CC1 (time headway) were calibrated based on the 

sensitivity analysis to truly reflect the actual traffic conditions. The simulation program was executed with the cali-

brated parameters and various on-ramp traffic volumes to supplement the traffic data. The gathered traffic data sets 
from field tests and simulations were classified into four groups based on the various on-ramp traffic flow patterns 

(free-flow, reasonably free-flow, unstable flow, and congested flow condition). The influence of on-ramp traffic flow 

on the mainline average speed is discussed for each group. The results showed that the average travel speed of the 
mainline is significantly affected by the v/C ratio of the on-ramp, as the v/C ratio of the entrance ramp increases, the 

average travel speed of the mainline significantly decreases. Additionally, the four-parameter logistic model was de-

veloped to model the mainline average speed changes with different mainline v/C ratios under various on-ramp traffic 
flow patterns. The results demonstrate that the model fits the data well. The findings of this study can provide reference 

information for the implementation of ramp management strategies. 
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1. Introduction 

The phenomenon of frequent traffic congestion and 

accidents on freeways has become a ubiquitous 

problem around the world. As an indispensable part 

of a freeway system, the ramp is a short segment of 

the freeway connecting two traffic facilities and 

providing vehicles of two roads with direct conver-

sion. However, a growing body of evidence has 

shown that compared with other sections of free-

ways, freeway ramp influence segments contribute 

to more traffic crashes and traffic jams (Qi et al. 

2020, Lyu et al. 2022). All the existing studies 

acknowledge that slow-speed vehicles entering from 

on-ramps and deceleration vehicles exiting off-

ramps can increase the speed dispersion of the main-

line and induce frequent changing lanes or accelera-

tion and deceleration behaviors. These complex traf-

fic behaviors interfere with the traffic on the main-

line and thus result in congestion and safety issues 

(Sun et al. 2014, Cheng et al. 2022). Thus, reasona-

ble management and control of ramps, especially on-

ramps, is of critical importance in reducing vehicle 

crashes and relieving traffic jams. These manage-

ment strategies can help existing road systems dy-

namically adapt to increasing demand. 

To create effective operational strategies for freeway 

ramp management, it is essential to understand the 

influence of ramps on the traffic operation charac-

teristics of freeway mainlines. Interactions are dy-

namic in freeway ramp influence segments, the op-

erating conditions on the on-ramp can have an im-

pact on the operating conditions on the freeway. 

Currently, most existing studies on the impact of 

freeway ramps have primarily focused on traffic 

flow behavior (Li et al. 2019, Zhang et al. 2023). The 

traffic flow operation analysis methods can be 

mainly summarized into regression analysis, theo-

retical analysis, and traffic simulation (Xu et al. 

2020, Bhatt et al. 2022, Wang et al. 2023). The traf-

fic speed of vehicles entering from on-ramps can be 

much lower than that of the mainline, which could 

cause drastic speed changes. That hinders the traffic 

on the highway, and affects the operating conditions 

on the freeway. Thus, understanding the influence of 

traffic flow of on-ramps on the operating character-

istics of the freeway mainline can provide reference 

information for the implementation of effective 

ramp management strategies to relieve traffic con-

gestion and reduce traffic crashes related to ramps.  

Therefore, this study aimed to verify the impact of 

traffic flow of on-ramps on the average travel speed 

of the mainline on freeways. On a few typical basic 

freeway interchanges in Chin, field tests were car-

ried out to collect the traffic flow data, including 

traffic volume, speeds, and vehicle type under vari-

ous traffic flow patterns. As it is difficult to obtain 

the required traffic flow patterns only through field 

testing, the VISSIM traffic simulation model was 

also utilized to gather the data. The gathered data 

sets were divided into four groups according to the 

on-ramp traffic flow patterns (free-flow, reasonably 

free-flow, unstable flow, and congested flow condi-

tion). For each group, the influence of traffic flow of 

the on-ramp on the average speed of the mainline is 

discussed. In addition, a four-parameter logistic 

model was built to model how on-ramp traffic flow 

affects the average speed of the mainline.  

The remaining sections of this manuscript are struc-

tured as follows. Section 2 provides a literature re-

view of the existing studies. Section 3 introduces the 

traffic data collecting methodology used in this 

study. Section 4, analyzes the results obtained from 

the field data and simulation data in detail, and de-

velops a four-parameter logistic prediction model. 

Section 5 summarizes the findings of this study. 

 

2. Literature review 

In previous studies, it has been proved that traffic 

jams and crashes are more likely to occur on ramp-

influence segments. Golob et al. (2004) analyzed the 

accident characteristics of weaving sections using 

accident data for Orange County in Southern Cali-

fornia. Wang et al. (2013) analyzed 2026 traffic 

crashes in Texas and developed a relationship be-

tween crash rates and influencing factors for on-

ramp junctions. Qu et al. (2014) assessed the poten-

tial crash risks impacted of ramps in various types of 

locations (before on-ramps, between on-ramps and 

off-ramps, and after off-ramps) across different traf-

fic lanes. Yang et al. (2019) explored the crash types 

and factors contributing to crashes on different 

ramp-influence segments of freeways. Many schol-

ars have finished much valuable work on the safety 

assessment of the freeway ramp influence segments. 

Budzynski et al. (2021) used the accident data and 

data on interchanges on expressways in Poland to 

build a database to develop a safety evaluation sys-

tem for interchanges. Owing to insufficient traffic 

accident data, traffic conflict technology was also 
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used in safety evaluation models. Qi et al. (2020) an-

alyzed traffic characteristics as well as forecast traf-

fic safety of the merging area using the modified 

post-encroachment time model. Despite significant 

progress in accident prevention, traffic safety issues 

in developing countries continue to be complicated. 

Freeway congestion and crashes are mostly at-

tributed to the merging or diverging around on-

ramps and off-ramps, where travel speed can be 

much lower than that on the mainline. Thus, in addi-

tion to excessive lane changing or acceleration and 

deceleration, significant speed fluctuations may re-

sult. That impedes the movement of vehicles on the 

mainline and results in congestion and safety issues. 

Therefore, reasonable management and control of 

ramps has been accepted as an effective solution to 

relieve traffic jams and crashes caused by ramp traf-

fic flow. These management strategies can help ex-

isting road systems dynamically adapt to increasing 

demand. Currently, most studies mainly focus on 

various control algorithms based on mathematical 

models for traffic flow (Yu et al. 2015). Many re-

searchers have attempted to apply new techniques to 

realize more effective management and control of 

ramps. They include neural network control (Shi et 

al. 2013), fuzzy control (Liang et al. 2016), and re-

inforcement learning (Belletti et al. 2018). However, 

in addition to the abovementioned control algo-

rithms based on mathematical models, understand-

ing the influence of ramps on the traffic operation 

characteristics of freeway mainlines is essential to 

create effective operational strategies for freeway 

ramp management.  

In recent, the operation analysis methods of freeway 

ramp influence segments can be mainly summarized 

into regression analysis, theoretical analysis, and 

traffic simulation. Regression analysis relies on field 

traffic data to conduct statistical analysis and estab-

lish the relationships between geometric design fac-

tors and performance measures (Xu et al. 2020). Ler-

tworawanich et al. (2003) proposed a method for es-

timating the capacity for weaving sections based on 

gap acceptance theory and linear programming tech-

nique, while Evans et al. (2001) developed an ana-

lytical model for the prediction of breakdown at 

freeway merges using Markov chains. Mohamed et 

al. (2020) and Wang et al. (2023) use traffic simula-

tion software, such as VISSIM and AIMSUN to sim-

ulate and analyze the operation status of inter-

changes. In addition, several studies suggest that 

traffic conditions affect the traffic operation charac-

teristics of freeway ramp influence segments. 

Daamen et al. (2010) indicated that merging behav-

ior varied under different traffic conditions. It was 

found that different merge locations were used dur-

ing free-flow and congestion through analysis of 

3459 vehicle trajectories. Shen et al. (2015) demon-

strated different types of traffic flows influence the 

capacity of freeway merge areas. Li et al. (2019) an-

alyzed the merging behavior on the freeway under 

different traffic densities and concluded that merg-

ing location, and merging speed are significantly in-

fluenced by traffic densities. 

Interactions are dynamic in freeway ramp influence 

segments, and so the operating conditions on the 

ramp can have an impact on the operation of the 

freeway mainline. A variety of research on the influ-

ence of ramps is also ongoing. Diedrich et al. (2000) 

measured the effects of ramps on traffic dynamics in 

a cellular automaton for traffic flow. Mhirech et al. 

(2011) analyzed the effect of ramp positions on the 

traffic flow behavior of a one-dimensional cellular 

automaton. Tang et al. (2015) used the car-following 

model to explore the effects of ramps on the fuel 

consumption of vehicles on the mainline road. 

Through the analysis of the relationship between the 

status of traffic operation and traffic safety, Hu et al. 

(2017) analyzed the impact of on- and off-ramps on 

the security of the freeway. Despite many research-

ers having focused on the influence of ramps on the 

traffic flow behavior of freeways, little research has 

been carried out on the impact of ramps under vari-

ous traffic conditions on the travel speed of the free-

way mainline. 

The traffic speed of vehicles entering from on-ramps 

can be much lower than that of the mainline, which 

could cause drastic speed changes. That hinders the 

traffic on the freeway, and affects the operating con-

ditions on the freeway. According to a study in 

Northern Virginia, speed is the primary contributor 

of ramp-related vehicle crashes and traffic jams 

(Mccartt et al. 2004). Therefore, understanding the 

influence of traffic flow of on-ramps on the travel 

speed of the freeway mainline can provide reference 

information for the implementation of effective 

ramp management strategies to relieve traffic con-

gestion and reduce traffic crashes related to ramps. 
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3. Method 

As stated above, the objective of this research was 

to verify the influence of traffic flow of on-ramps on 

the average speed of the mainline on freeways. Ac-

cording to the actual road traffic, the influence of the 

entrance ramp under different traffic flow patterns 

on the speed of the mainstream differs. Therefore, an 

analysis of the change in the mainline speed with 

different on-ramp traffic flow patterns is required. 

Firstly, field tests were designed to collect the raw 

traffic data at the freeway observation points under 

different traffic conditions. Secondly, as it is diffi-

cult to obtain the required different traffic flow pat-

terns only using field experiments, the VISSIM traf-

fic simulation model was also employed to collect 

traffic data. There are some basic data about high-

way geometry, driver behavior, and traffic flow pa-

rameters that need to be entered into VISSIM. Fi-

gure 1 illustrates the flowchart of field tests and si-

mulations. 
 

3.1. Data collection 

3.1.1. Field test 

For this study, a large amount of traffic flow data 

under different traffic flow patterns around the free-

way interchange is required. Therefore, field tests 

were used to collect the raw traffic data of the free-

way under different traffic conditions. To make the 

results general and representative, the study sections 

should be the typical freeway segments in China. To 

eliminate the effect of road alignment on the traffic 

flow speed, the study area should not have moun-

tainous areas, and routes with straight alignments or 

flat large-radius curves should be selected. In ac-

cordance with all the above requirements, road sec-

tions K449+100-K451+900 of a four-lane freeway 

G5 and K1029+800-K1031+900 of a four-lane free-

way G30 were chosen as the study areas, as shown 

in Figure 2. The road section K449+100-K451+900 

is a mainline section near the entrance ramp of 

Baqiao Interchange on the freeway G5. The road 

section K1029+800-K1031+900 is a mainline sec-

tion near the entrance ramp of Hechizhai Inter-

change on the freeway G30. 

 

The selected two road segments (G5 and G30) are 

both typical four-lane freeway segments in China, 

and there is a two-lane on-ramp on both selected 

road segments. The lane width of both the mainline 

and ramp is 3.75 meters. On the mainline sections of 

G5 and G30, the design speed is 120 km/h, and on 

the on-ramp sections of G5 and G30, the design 

speed is 60 km/h. The greatest longitudinal slope in 

the two study sections is between -1.5% and 1.5%. 

Based on the statistical data from nearby toll sta-

tions, it was found that the proportion of trucks dur-

ing the experiment period was roughly 14%, with a 

variable range of no more than 2% in the two study 

sections. 

The Traffic Engineering Handbook in China has 

shown that the operational effect of merging vehi-

cles is heaviest in segments for a distance extending 

from the physical merge point to 760 m downstream 

and 150 m upstream. The study sites on the mainline 

were set outside the merge influence area. There are 

two study sites and one study site on each main road 

and each ramp, respectively. Figure 3 shows the de-

tails of the study areas. During the experiment, traf-

fic flow data such as traffic volumes, instantaneous 

speed, and vehicle type were collected by using the 

AXLELIGHT Roadside Laser Vehicle Classifica-

tion System. The device can automatically gather 

traffic flow data to assess traffic characteristics. Ad-

ditionally, this instrument can be positioned on the 

farthest edge of the hard shoulder, where the driver 

generally does not pay attention, minimizing its im-

pact on the driving behavior.

 

 
Fig. 1. Research flowchart 
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Fig. 2. Xi’an metropolitan area highway network and the study areas 

 

 
Fig. 3. Schematic map of study sites 

 

The freeway does not have stable morning and even-

ing peak periods, and there are obvious traffic fluc-

tuations both on holidays and non-holidays. A non-

holiday is usually a good time to observe traffic in 

low and medium-density conditions, whereas a hol-

iday is a good observation time for high and con-

gested traffic flows. To obtain a large amount of traf-

fic data, the data were collected during a non-holi-

day period (April 4th to 7th, 2019) and during holi-

days (International Labor Day, May 1st to 4th, 2019, 

and Mid-Autumn Festival, September 13th to 15th, 

2019). Sunny days without any rain or snow were 

chosen to remove variations in traffic flow data 

caused by adverse weather conditions. In this study, 

more than 60,000 raw data points were obtained. 

 

3.1.2. Simulation using VISSIM 

As mentioned earlier, as it is difficult to obtain the 

required traffic flow patterns only through field ex-

periments, the VISSIM traffic simulation model was 

also utilized. VISSIM is a microscopic simulation 

tool developed from an amount of real traffic flow 

data and is used to model complex traffic operations 

and estimate traffic parameters. The VISSIM simu-

lation model was used in this study to simulate the 

traffic flow of the mainstream when the on-ramp is 
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under congestion flow conditions. To achieve real-

istic simulations and enable comparison, the VIS-

SIM model was created using the results of the G30 

freeway interchange field experiments. The basic 

data about highway geometry, traffic flow, traffic 

composition, and driver behavior models that need 

to be entered into VISSIM were developed, and the 

parameters of each model were reset and corrected. 

The geographical map of the study area of the exper-

imental freeway was imported into VISSIM, and the 

freeway geometry details, such as the number of 

lanes, lane width, adjacent exit, and entrance dis-

tance of the freeway interchange were assigned as 

observed in the field, as shown in Figure 4. Traffic 

volume and traffic composition were kept the same 

as observed in the field. The speed distribution dia-

gram for passenger cars and heavy vehicles studied 

in the field was used as the basis for setting the de-

sired vehicle speed in the model. 

VISSIM performs trajectory-based network simula-

tion that utilizes a psycho-physical driver behavior 

model developed by Wiedemann. As this study fo-

cused on the freeway interchange, the Wiedemann 

99 model, which is a psychophysical driver behavior 

model of a freeway or suburban roadway, was used. 

Ten different parameters related to driver behavior 

are available in the Wiedemann 99 model, labeled 

from CC0 to CC9 with their default values. To check 

the sensitivity of these parameters on simulated re-

sults, the simulation was performed with varying 

values of these ten parameters in this study and the 

average travel speed of the section was evaluated. 

The results of the sensitivity analysis showed that 

two parameters, CC0 and CC1, had the most signif-

icant influence on driving speed. The effect of the 

two parameters on simulated driving speed is shown 

in Figure 5. 

 
 

 
Fig. 4. Simulation 3D rendering in VISSIM 
 

 
(a)                                                                                  (b) 

Fig. 5. Effect of parameters CC0 and CC1 on simulated driving speed 
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Parameter CC0 represents the standstill distance (m) 

between vehicles and CC1 is the time headway (s) 

that it is desirable for a driver should maintain at a 

certain traffic volume level. Therefore, the present 

study focused on the calibration of these two param-

eters, and the other parameters of the driver model 

were set to the system default values.  

The value ranges for the selected two parameters 

were chosen and all possible combinations and 

speeds were obtained from the simulation program. 

To find a good solution for the combinational para-

metric optimization problem, an objective function 

was established based on the similarity between 𝑣𝑠 

(the speed from the simulation program) and 𝑣𝑚 (the 

speed observed in the field). 
 

s = |1 −
𝑣𝑠

𝑣𝑚
| (1) 

 

The results showed that the objective function s has 

the minimum value when the prepositional parame-

ters combination of CC0 and CC1 is 1.5 (m) and 1.2 

(s/veh), respectively. The VISSIM run for these val-

ues given as inputs to the driver behavior model 

could replicate the field traffic flow satisfactorily. 

Therefore, in this study, a value of 1.5 (m) was taken 

for CC0 and a corresponding value for CC1 of 1.2 

(s/veh). VISSIM was run with these values given as 

input parameters, and the simulated speed and traffic 

volume of the study sections were compared with 

the observed data. The results of t-tests showed that 

the difference in the simulated data and the actual 

data was not significant at the 95% level. This indi-

cated that the simulation model satisfied the calibra-

tion requirements. 
 

3.2. Division of Traffic Flow Patterns 

Traffic flow patterns affect the vehicle operating 

conditions of individual vehicles. Vehicle speeds are 

often highly reliant on traffic flow, excluding varia-

tions in road geometry, road surface conditions, and 

weather conditions (Wang et al. 2016). As the speed 

of the mainline varies to the entrance ramp and 

mainstream traffic flow patterns, a large amount of 

traffic flow data corresponding to various traffic 

flow patterns is required to ensure the integrity of the 

test data. Traffic flow patterns can be typically cate-

gorized by service level (Manual 2000). The traffic 

volume to freeway capacity (v/C ratio) was em-

ployed as an indicator of the service level of the road 

in accordance with the “Technical Standard of High-

way Engineering” in China, as indicated in Table 1. 

There are several different service levels, from 1 

(“free-flow”) to 6 (“most congested”). The Highway 

Capacity Manual (HCM) published in the US uses 

traffic density as an indicator of the service level and 

defines six different service levels represented by 

letters A to F, which are equivalent to Chinese high-

way service levels 1 through 6. 

According to the road service levels of freeways in 

China, with the v/C ratio as the evaluation index, 

four traffic flow patterns can be defined as illustrated 

in Table 2. The free-flow condition corresponds to 

the Grade-1 service level. The reasonably free-flow 

condition, where the consequences of slight disrup-

tion are easily absorbed, is represented by the Grade-

2 service level. Grade-3 and grade-4 service levels 

relate to the unstable flow condition, where vehicles 

interfere with each other, and minor incidents can be 

expected to create queues. The congestion flow con-

dition corresponds to the Grade-5 and grade-6 ser-

vice levels. To acquire traffic flow data for this man-

uscript, tests were repeated under different traffic 

flow patterns (free-flow, reasonably free-flow, un-

stable flow, and congested flow condition) of the en-

trance ramp and mainline throughout both holiday 

and non-holiday times. 

 

Table 1. Road service levels of freeway 

Level of Service v/C ratio 

Design Speed (km/h) 

120 100 80 

Maximum Traffic [pcu/(h·ln)] 

1 v/C ≤ 0.35 750 730 700 

2 0.35 < v/C ≤ 0.55 1200 1150 1100 

3 0.55 < v/C ≤ 0.75 1650 1600 1500 

4 0.75 < v/C ≤ 0.90 1980 1850 1800 

5 0.90 < v/C ≤ 1.00 2200 2100 2000 

6 v/C > 1.00 0-2200 0-2100 0-2000 
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Table 2. Correspondence between the v/C ratio and 

traffic flow patterns. 
v/C ratio Traffic Flow Patterns 

v/C ≤ 0.35 free-flow condition 

0.35 < v/C ≤ 0.55 reasonably free-flow condition 

0.55 < v/C ≤ 0.9 unstable flow condition 

v/C > 0.9 congestion flow condition. 

 

4. 4. Results 

4.1. Statistical Results 

As mentioned above, tests were repeated under dif-

ferent traffic flow patterns of the on-ramp and main-

line to gather traffic flow data, and more than 60,000 

raw data points were collected. Throughout the ex-

periment period, the v/C ratios of the on-ramp 

ranged between 0.1 and 0.9, corresponding to free-

flow, reasonably free-flow, and unstable flow condi-

tions of the on-ramp. The v/C ratios of the mainline 

were mostly concentrated in the range of 0.1–1.1, 

corresponding to free-flow, reasonably free-flow, 

unstable flow, and congested flow conditions of the 

mainline.  

Due to real-time traffic flow data of the entrance 

ramp under congestion conditions being difficult to 

obtain, the VISSIM microscopic simulation model 

was employed to collect the traffic flow data when 

the on-ramp is under congestion flow conditions. A 

simulation program of the four-lane freeway inter-

change G30 was executed with combinations of dif-

ferent on-ramp traffic volumes (from 3150 vph to 

3850 vph) and different mainstream traffic volumes 

(from 700 vph to 7700 vph). The v/C ratios of the 

on-ramp ranged between 0.9 and 1.1, and the v/C ra-

tios of the mainstream ranged between 0.1 and 1.1 

This section analyzes and discusses the key statisti-

cal findings that were acquired from the field data 

and simulated data to understand the impact of the 

on-ramp traffic flow on the mainline speed. The data 

consisted of 10-minute aggregated data. By group-

ing the raw data, the traffic volume and average traf-

fic speed were calculated. For each data set, the v/C 

ratios of the on-ramp and mainline, and the average 

speed of the mainstream were determined. The col-

lected data were then used to analyze the change in 

mainline speed with different on-ramp and mainline 

traffic flow patterns for the purpose of this article. 

Figure 6 shows a scatter plot of the variations in the 

mainline average speed with different mainline v/C 

ratios under various on-ramp traffic flow patterns 

(free-flow, reasonably free-flow, unstable flow, and 

congested flow condition). 

From Figure 6, in general, the data analysis showed 

some similarities in how changes in the mainline av-

erage travel speed with different v/C ratios of main-

stream under different traffic flow patterns of the on-

ramp. Regardless of the traffic flow patterns of the 

on-ramp, the average speed of the mainline first ini-

tially decreased gradually from an upper asymptote 

as v/C ratios values of the mainstream increased, 

sharply decreased in the middle, and then leveled off 

at a lower asymptote after a certain decrease.  

 

 
Fig. 6. Statistical results obtained from field test data and simulation data 
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On the whole, when the v/C ratio of the mainstream 

is less than 0.35, vehicle driving is not affected by 

other vehicles. In this case, as the v/C ratio of the 

mainstream increases, the average speed of the 

mainline decreases slowly. When the v/C ratio of the 

mainstream is in the range of 0.35-0.9, vehicles af-

fect each other, and the speed of the vehicle is 

greatly affected by uncertainty. Under these circum-

stances, a slight fluctuation in the traffic volume of 

the mainstream will cause changes in the speed, so 

as the v/C ratio of the mainstream increases, the av-

erage speed of the mainline sharply decreases. When 

the v/C ratio of the mainstream is greater than 0.9, 

vehicle velocity has been reduced to a certain value 

and variations from “stop-and-go” waves, so as the 

v/C ratio of the mainstream increases, the average 

speed of the mainline decreases slowly. 

In addition, it can be seen from Figure 6, that with a 

fixed mainstream volume-to-capacity ratio, the in-

fluence of different traffic flow patterns of the en-

trance ramp on the average travel speed of the main-

stream also differs. When the traffic flow of the on-

ramp is under congestion flow condition, the de-

crease in average travel speed is largest, and then 

followed by the decreases when the traffic flow of 

the entrance ramp is under unstable flow condition, 

reasonably free-flow condition, and free flow condi-

tion. Based on the observation, with a fixed main-

stream v/C ratio, a high value for the on-ramp v/C 

ratio results in a low value for the average travel 

speed of the mainline. In other words, the speed of 

the mainline is significantly affected by the v/C ratio 

of the on-ramp, as the v/C ratio of the entrance ramp 

increases, the average travel speed of the mainline 

significantly decreases. 

 

4.2. Data Model 

The generalized logistic curve was first developed to 

model population growth (Marchetti et al. 1996). 

This function has been extensively employed in sim-

ulation studies of plant growth in agriculture (Proc-

tor 2010), epidemic growth in biology (Chen et al. 

2005), and market growth in economics (Qu et al. 

2016). The logistic growth curve, which has been 

used to represent functions that initially increased 

gradually from an upper asymptote, then displayed 

rapid growth in the middle section, slowly increased 

at the end, and leveled off at a lower asymptote after 

a certain increase, is a “S-shaped” curve (sigmoidal 

shape curve). 

Similar adjustments can be made to this curve to 

model a reversing trend. This reverse curve has a re-

versed ‘S’ shape that progressively declines from an 

upper asymptote at the beginning, decreases quickly 

in the middle, and then steadily decreases to a lower 

asymptote that levels off at a specific minimum 

value. Because of its graceful “S-shaped” mathemat-

ical form, adjustable parameters, and ability to adapt 

to various numerical fittings, this type of curve has 

been frequently applied. The four-parameter logistic 

is a very flexible model for data following a sig-

moidal-shaped curve. The function of the four-pa-

rameter logistic model is as follows: 
 

y(x) = f(x; 𝐩) = 𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) = 𝑑 +
(𝑎−𝑑)

1+(
𝑥

𝑐
)

𝑏  (2) 

 

where, p = [a, b, c, d] is the parameter vector of the 

logistic model. The domain of the parameters is re-

striction c > 0. As observed in the equation, this lo-

gistic model has four parameters, and each parame-

ter has a different impact on the function. Parameter 

a is the upper asymptote, which controls the position 

of the top asymptote. Parameter b controls the slope 

of the curve. Parameter c is the inflection point, 

which is defined as the point on the curve where the 

curvature changes direction. Parameter d is the 

lower asymptote and controls the position of the bot-

tom asymptote. 

As stated in Section 3.1, according to the results of 

the field test and simulation, regardless of the traffic 

flow patterns of the on-ramp, observation scatter 

plots of the average travel speed of the mainstream 

changes with different v/C ratios of mainstream ex-

hibit a reversed ’S’ shape. Moreover, with a fixed 

mainstream volume-to-capacity ratio, a high value 

of v/C ratio of on-ramp results in a low value of the 

average travel speed of the mainline. To find the ex-

act relationship between the traffic flow of on-ramps 

and the mainline speed, the trend line must be fitted 

through the scatter plot. Therefore, it is important to 

choose a mathematical function that accurately ap-

proximates the underlying curve. This approximat-

ing function is called a curve model. The ideal curve 

model can possess the following qualities: (1) it sta-

tistically agrees with the trend line of the empirical 

observation, (2) it includes exact and obvious phys-

ical meaningful parameters, and (3) it has a straight-
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forward functional structure. The four-parameter lo-

gistic model therefore effectively satisfies the 

specifications. 

By observing traffic flow, some of the parameters in 

the logistic model can be given specific physical 

meanings, which have been applied in transportation 

to solve macroscopic traffic flow problems (Wang et 

al. 2011, Liu et al. 2019). The physical interpretation 

of some of the parameters is shown in Table 3. 

As Table 3 summarizes, vf and vb are the upper and 

lower asymptotes respectively, and the values of 

vf and vb can be obtained from observation of traffic 

flow. Parameters b and c are typically represented as 

dimensionless constants to control the shape of the 

curve, and the values of these constants can be con-

strained using statistical data. Specific to this study, 

parameter c designates the point at which the aver-

age travel speed abruptly changes. According to the 

observation in Section 3.1, parameter 𝑐 can be con-

cluded to be directly related to the traffic conditions 

of the on-ramp, and this parameter could be given 

physical meaning as the v/C ratio of the on-ramp. 

Thus, c =f1 (v/Cr) could be used to compute the pa-

rameter c. Then, the four-parameter logistic model 

can then be used to determine the average travel 

speed of the mainline as follows: 
 

𝑉𝑢𝑝 = 𝑓(v/C; v𝑓 , 𝑏, 𝑓1 (𝑣/𝐶𝑟), v𝑏) = 

= v𝑏 +
(v𝑓−v𝑏)

1+(
v/C

𝑓1 (𝑣/𝐶𝑟)
)

𝑏  (3) 

 

where, vup is the average travel speed of the mainline 

under a v/Cr condition. v/C is the volume-to-capacity 

ratio of the mainstream. v/Cr is the volume-to-capac-

ity ratio of the entrance ramp. vf is the free-flow 

speed of the mainstream. vb is the average travel 

speed under congested conditions of the mainstream. 

Taking “Δ v/Cr = 0.1” as the step size, the statistical 

data were divided into 11 groups (v/Cr = 0.1, v/Cr = 

0.2, v/Cr = 0.3, v/Cr = 0.4, v/Cr = 0.5, v/Cr = 0.6, v/Cr 

= 0.7, v/Cr = 0.8, v/Cr = 0.9, v/Cr = 1.0, v/Cr = 1.1). 

The above-mentioned four-parameter logistic model 

was selected as the fitting function, the statistical 

data and plot of the model are depicted in Figure 7.
 

Table 3. Physical meanings of two parameters 
Original parameter New notation Physical meaning Unit 

𝑎 v𝑓 Free-flow speed of mainstream km/h 

𝑑 v𝑏 Average travel speed under congested conditions of mainstream km/h 

 

 
Fig. 7. Fitting results of different groups
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As the figure shows the logistic model curve de-

scribes the data well. The values of vf and vb for the 

different groups were obtained by empirical obser-

vation, and the best values of b and c for the different 

groups were found by fitting method, they are given 

in Table 4. 

Using the best values of the on-ramp volume-to-ca-

pacity ratio coefficient c =f1 (v/Cr), the relationship 

between c and v/Cr could be determined using a lin-

ear model. The result of linear regression is pre-

sented in Figure 8. It provides a good fit (R2) to the 

data (R2 = 0.984 and adj R2 = 0.982). 

With the above results, the model of the impact of 

the on-ramp on the average travel speed of the main-

stream could be developed, and the model equation 

is given below: 
 

𝑉𝑢𝑝 = v𝑏 +
(v𝑓−v𝑏)

1+(
𝑣 𝐶⁄

0.835−0.418∗𝑣 𝐶⁄ 𝑟
)

𝑏  (4) 

 

The value of parameter b under different v/Cr condi-

tions is summarized in Table 5. 

 

Table 4. Values of parameters in the model 
𝒗/𝑪𝒓 (volume-to-capacity 

ratio of the on-ramp) 
𝐯𝒇 (km/h) 𝐯𝒃 (km/h) Best 𝒃 Best 𝒄 

0.1 91 44 5.435 0.763 

0.2 91 44 5.435 0.746 

0.3 91 44 5.435 0.724 

0.4 91 36 5.267 0.694 

0.5 91 36 5.267 0.654 

0.6 91 18 5.069 0.579 

0.7 91 18 5.069 0.535 

0.8 91 18 5.069 0.491 

0.9 91 18 5.069 0.445 

1.0 91 18 5.069 0.413 

1.1 91 18 5.069 0.382 
 

 
Fig. 8. Linear regression of c= f1 (v/C r) 

 

Table 5. Values of the parameter b 
Traffic Flow Patterns of the on-ramp 𝒗/𝑪 𝒓 𝒓𝒂𝒕𝒊𝒐  𝒃 

free-flow condition [0.1, 0.3] 5.435 

reasonably free-flow condition (0.3, 0.5] 5.267 

unstable flow and congestion flow condition (0.5, 1.1] 5.069 
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4.3. Model Verification 

The model can be used to determine the average 

speed of the mainline under various on-ramp traffic 

flow patterns. However, the model was developed 

using statistical information obtained from the G5 

and G30 freeways. Therefore, it is necessary to con-

firm the versatility and accuracy of the model. Fur-

thermore, data from another freeway must be gath-

ered to confirm the model’s accuracy. 

The data that were gathered from a part of the three-

lane freeway G65 interchange with a one-lane on-

ramp were utilized to validate the model. Through-

out the experiment period, the traffic flow of the en-

trance ramp was under free-flow conditions, and the 

v/C ratios of the mainstream were mostly concen-

trated in the range of 0.1 and 1.0. The model is di-

rectly related to the traffic flow of the on-ramp, data 

with a volume-to-capacity ratio of the on-ramp of 

0.2 were chosen to verify the mode (i.e., v/Cr = 0.2). 

According to the field observation, vf = 81 km/h, vb 

=40 km/h. According to Table 5, b = 5.435. The field 

data and plot of the model are depicted in Figure 9. 

As can be seen in Figure 9, the model fits the field 

data from the freeway G65 well. To evaluate the 

model accuracy, the mainstream speed values calcu-

lated by the model were compared with the field 

data, shown in Figure 10. The relative error of the 

model was below 10%, which suggested that the 

model accuracy achieved in this study met the re-

quirements.
 

 
Fig. 9. Field data and plot of the model on G65 
 

 
Fig. 10. Comparison of the model and field data 
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5. Discussion and Conclusions 

Interactions are dynamic in freeway ramp influence 

segments, the operation of the on-ramp can have an 

impact on the operating conditions on the freeway 

(Hu et al. 2017, Li et al. 2019). This study was con-

ducted to understand the impact of traffic flow of on-

ramps on the speed of the mainline on freeways. 

Field experiments were conducted to collect traffic 

data under various traffic flow patterns on some typ-

ical Chinese basic freeway interchanges. The VIS-

SIM simulation model was also used to generate 

traffic flow patterns that were difficult to obtain in 

the field. Driver behavior parameters CC0 to CC9 

were tested by sensitivity analysis of the traffic data 

obtained from the VISSIM simulations, and the re-

sult showed that two parameters, CC0 and CC1, had 

the most significant influence on simulated results. 

This finding is consistent with earlier studies (Chan-

dra et al. 2016, Srikanth et al. 2022). Therefore, pa-

rameters CC0 and CC1 were calibrated to truly re-

flect the Chinese actual traffic conditions in this 

study.  

The traffic speed of vehicles entering from on-ramps 

can be much lower than that of the mainline, which 

could cause drastic speed changes (Cheng et al. 

2022). The obtained data both from field tests and 

simulations were used to analyze the change of 

mainline speed with different mainline v/C ratios 

under various on-ramp traffic conditions. The results 

showed that observation scatter plots of the speed of 

the mainstream changes with different v/C ratios of 

mainstream exhibit a reversed ’S’ shape. Moreover, 

with a fixed mainstream volume-to-capacity ratio, a 

high value of v/C ratio of on-ramp results in a low 

value of the average travel speed of the mainline. In 

other words, the speed of the mainline is signifi-

cantly affected by the traffic flow of the on-ramp, as 

the traffic flow of the entrance ramp increases, the 

speed of the mainline significantly decreases.  

The logistic model has been applied in transporta-

tion, and the parameters in the model can be given 

specific physical meanings by observing traffic flow 

(Wang et al. 2011, Liu et al. 2019). To find the exact 

relationship between the traffic flow of on-ramps 

and the mainline speed, the four-parameter logistic 

model was developed to model the impact of the 

traffic flow of on-ramps on the mainline speed under 

different traffic flow patterns. The physical mean-

ings and values of all the parameters in the model 

were determined, and the versatility and accuracy 

were also proven using field data and relative errors. 

The model developed in this research can provide 

reference information for the implementation of 

ramp management strategies. If the v/C ratio of the 

on-ramp and mainstream can be determined, the 

model can be used to predict the mainstream average 

speed. However, considering that the traffic data 

were collected on some typical Chinese basic free-

way interchanges, whether this model is suitable for 

other highway grades will need to be considered in 

future research. 
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