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Abstract

A control system, which achieves prescribed speed and position responses, for elec-
tric drives with a significant torsion vibration mode is presented. Control system design
exploits state-space control and forced dynamics control principles. Derived control algo-
rithm respects the vector control condition by keeping the direct axis current component
approximately zero as well as controlling the load position with prescribed closed loop
dynamics. Set of two observers, one on load side and the second one on motor side, ge-
nerate all state variables necessary for control algorithm design including torques acting
on the motor and load side to satisfy all conditions for achieving prescribed dynamics.
This approach eliminates the position sensor on motor side. The simulations confirm
that proposed model based position control system can operate with moderate accuracy.

Keywords: control systems, control vector algorithm, state-space control

1. Introduction

To reduce number of sensors for position control of the drive with flexible
coupling a control system based on state-space control and forced dynamics con-
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trol completed with observation of state variables is developed. Main goal here is
to verify overall position control algorithm together with correct function of two
observers mutually interacted providing estimates of all the necessary state-space
variables for control including of load torques on both sides of flexible coupling.

Control algorithm for state-space control of load position, θL of the drive with
permanent magnet synchronous motor (PMSM) and flexible coupling is developed
in two consequent steps.

First an inner motor speed control loop is formed using feedback linearisation
principles, [1]. This control algorithm is formulated in the rotor flux fixed d q frame
respecting mutual orthogonality of the stator current vector and rotor magnetic flux
vector to achieve maximum torque of the machine, [2, 3]. Applying ‘Forced Dyna-
mics Control,’ (FDC) principles, [4] speed control system responses with prescribed
linear first order dynamic with specified time constant, T. Speed control system
also automatically counteracts motor load torque by producing a nearly equal and
opposite control torque component, provided by motor torque observer.

State-space position control system including state-feedback completed with
integral controller is developed as second step. Replacement of the whole speed
control loop with the first order delay not only linearises this loop but also substan-
tially simplifies design of the overall position control system. Design of position
control algorithm exploits FDC principles and therefore complies also with pre-
scribed closed-loop dynamics for load angle control in spite of the external load
torque and the vibration mode presence. This approach achieves non-oscillatory
position control with a specified settling time, Tss.

Even if state-space control principles are exploited the calculation of state feed-
backs coefficients and integral controller constant is done by pole-placement method.
Possibility to exploit FDC for control of the drive with flexible coupling was al-
ready verified in [5]. Designed control system there requires two position sensors.
One sensor is used to measure rotor position and the second one measures load
position. Preliminary experiments with this control structure confirm possibility to
control load angle with prescribed dynamics. Conventional approach to control of the
drive with flexible coupling with PI and PID regulators designed by pole-placement
method for speed control of two inertia system was described in [6].

Linearisation of the speed control algorithm and the design state-space based
position control algorithm operating with one position sensor only require estimation
of state variables including load torques. To complete this task two observers were
designed. Due to state dependence of flexible load the observer on load side is
designed as state observer. Second observer on motor side is Luenberger type and
its main purpose is to estimate for FDC torque acting on the shaft of motor.

The original contribution of this paper is a preliminary verification by simulation
of proper function of the overall control system including two observers. Simula-
tion results presented further confirm that control system and observers operates in
agreement with theoretical assumptions made under their development and design
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control system is capable to eliminate the torsion oscillations while controlling the
load position with moderate precision.

2. Position Control System Development

Basic idea of the position control system development is at first to linearised
control system for speed control of the PMSM and secondly to design state-space
position control system, which obtains all the state variables from state-space ob-
server based on the load model.

Overall position control system block diagram is shown in Fig. 1. If compared
with [5], designed control system needs the measurement of load position only. This
way elimination of position sensor on the side of PMSM is achieved.

Fig. 1. Block diagram for position control system design

2.1. Description of PMSM and Load

The PMSM is described in the synchronously rotating d q co-ordinate system
fixed to the rotor of PMSM:
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Fig. 2. Representation of the flexible coupling

where id, iq and ud, uq are, respectively, the stator current and voltage components,
θR and ωR are the rotor position and angular velocity respectively and ΓL is the
external motor torque, p is the number of pole pairs and c=3p/2.

Fig. 2 shows flexible coupling representation and the differential equations,
where Ks is spring constant, are as follow:

θ̇L = ωL, (5)

θ̈R =
1
JR

[Γel − ΓL] , where ΓL = Ks (θR − θL) , (6)

θ̈L =
1
JL

[ΓL − ΓLe] . (7)

2.2. FDC of Motor Speed

The rotor speed is modeled by (2), where JR is the rotor moment of inertia.
The FDC speed law for rotor is based on the feedback linearisation that yields the
first order linear dynamics, where Tω is the prescribed time constant and ωRdem is
the demanded rotor speed.

dωR

dt
=

1
Tω

(ωR dem − ωR) or θ̈R =
1
Tω

(
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)
. (8a,b)

Setting id=0 up to nominal speed for vector control of the PMSM, [3] and
equating the RHS of (2) and (8b) yields the following FDC law for PMSM inner
speed control loop:
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hence id=id dem and iq=iq dem are regarded as the control variables. Current controlled
inverter is used to vary the stator voltage components, ud and uq, such a way that
stator components id and iq follow their respective demands, id dem and iq dem, with
zero dynamic lag.

Since the load torque appears on the right hand side of the demanded current,
iq dem, (8) it is necessary to design an observer for estimation of the net load torque
acting on the shaft of the motor (see corresponding section 3.2). Derived equations
(9) and (10) are used for FDC of PMSM rotor speed with the first order dynamics
and prescribed settling time, Tω This way speed controlled PMSM was linearised
and for the design of position control loop will be replaced with simple first order
delay.

2.3. Design of State-space Load Position Control

Plant for position control is formed by first replacing the FDC speed control
loop of PMSM by its ideal first order transfer function block and then integrating
this block with the model of load. The resulting plant for position control loop of
load angle is shown in Fig. 4.

Coefficients for state feedback and integral controller constant for position con-
trol system shown as Fig. 3, are designed using pole placement method.

sK

L
q

Le
G

Rq
&

demRq
&

Rq Lq
&

Lq

s

1

s

1 LLJ q&&

sJ

1

L

g1

g3

g2

g4

s

K
i

qL dem

qL

qL

wL

qR

wR

w+ sT1

1

Fig. 3. Block diagram for position control system design

First the transfer function of position control system was expressed as:

F (s) =
θL (s)

θL dem (s)
=

KiKs

JLTω

s5 + s4 1 + g1

Tω
+ s3 g2JL + KsTω

JLTω
+ s2 Ks

JLTω

(
1 + g3

)
+ s

Ksg4

JLTω
+

KiKs

JLTω
(11)



82 Ján Vittek, Pavol Makyš, Milan Pospı́šil, Elżbieta Szychta, Mirosław Luft

Transfer function was compared with desired polynomial with multiple poles re-
specting Dodds settling time formula, [7] (time to achieve 95% of demanded steady-
state value):

Tss = 1, 5 (1 + n)
1
ωn

or ωn = 1, 5 (1 + n)
1

Tss
(12ab)

where ωn is natural frequency of the system and n is order of the system. Desired
polynomial then has form:

(s + ωn)5 = s5 + 5ωns4 + 10ω2
ns

3 + 10ω3
ns

2 + 5ω4
ns + ω5

n (13)

Comparing the coefficients of the same degree in (11) and (13) yields the
required values of integration constant, Ki and state-feedback gains, gi i=1,2,3,4 as:
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3. Design of Observers

3.1. Load-side Observer

Due to state dependence of the shaft deflection torque, ΓL the ‘load side observ-
er’ is based on a real time model of the two-mass system, where ΓLe is an external
load torque. In this case the external torque is treated as if it is constant provided
that its change over a period equal to the observer correction loop settling time, TsO,
is negligible. The observer correction loops are actuated by the error, eθ = θL − θ∧L ,
between the measured load position and its estimate from the observer.

The observer state equations are therefore as follows:

spL = ωL, (15)
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Following constants are defined, a1=Ks/JL, a2=1/JL, a3=Ks/JR and a4=1/JR for real
time system matrix form description:
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Γel. (20)

If the error, eθ=pL – p∧L between the measured load position and its estimate multi-
plied with proper gain is added into each equation then observer equations written
in matrix form are:
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(
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)

(21)
By subtracting of observer equations from its real time model equation the dynamical
error system has form:


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To ensure convergence of the state estimates toward the real states the gains of
observer, kp1, kp2, kω1, kω2 and kΓ1 must be chosen such way that dynamical error
system satisfies condition for t→ ∞ εi(t)→0. Such convergence is guaranteed if the
eigenvalues of the system matrix have negative real parts.

det
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)
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Under assumption of collocations of all five dynamical error system eigenvalues at
λ=-ω0 (the observers settling time can be determined by Dodds formula, (12a),
which for n=5 results in T sO = 9/ω0). The desired characteristic equation has form:

(s + ω0)5 = s5 + 5ω0s4 + 10ω2
0s

3 + 10ω3
0s

2 + 5ω4
0s + ω5

0 (24)

Comparing the coefficients of the same degree in (23) and (24) yields the required
values of observer gains:

kΓ1 =
ω5

0

a2a3
, kp1 = 5ω0 , kω1 = 10ω2

0 − a1 − 1 ,

kp2 =
(
10ω3

0 − kp1 − k
Γ1a2

)
/a1, kω2 =

(
5ω4

0 − a3kω1

)
/a1.

(25)

Although the load torque is assumed constant in the formulation of observer
real time model, the estimate of this torque, Γ∧Le, will follow a time varying load
torque and will do so more faithfully as ω0 is enlarged with respect of computational
step. Block diagram of motor side observer is shown in Fig. 4.

3.2. Motor-side Observer

Load torque on the motor shaft needs to be estimated in ‘motor side observer’.
Due to fact that the form of ΓL(t) is unknown, its differential equations cannot
be formed. Motor load torque, ΓL is therefore treated as state variable, which is
constant provided that its change over a period equal to the observer correction loop
settling time, Tso, is negligible. So with sufficiently small settling time of observer,
Tso, the observer produces a net load torque estimate, Γ∗L(t) able to track real load
torque, ΓL(t), with very small and defined dynamic lag. Thus, the observer real time
model is based on (1) and (2) augmented by a new state equation, −dΓL/dt =0.
The observer correction loops are actuated by the error, e∗θ = θ∧r − θ∗r , between the
estimated position from load side observer and its new estimate from the motor side
observer. Block diagram of motor side observer is shown in Fig. 5.

The observer state equations are therefore as follows:

dθ∗R
dt

= ω∗R + kθe∗θ, (26)

dω∗R
dt

=
1
JR

(
cΨPMiq − Γ̂L

)
+ kωe∗θ, (27)

−dΓ∗L
dt

= 0 + kΓe∗θ. (28)

Here, kθ, kω nd kΓ are the observer’s correction loop gains, which can be designed by
pole placement method. Characteristic polynomial of the observer’s transfer function
has form:

s3 + kθs2 + kωs +
kΓ

JR
(29)
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Fig. 4. Block diagram of load side observer in Simulink

Under assumption of collocations of all three observers poles at λ=-ω0 the
settling time formula (12) can be used to determine natural frequency of observer,
ω0, which for n=3 results in ω0 =6/Tso. The desired characteristic equation has
form:

(
s +

6
Tso

)3
= s3 + s2 18

Tso
+ s

108
T2

so
+

216
T3

so
(30)

and yields a correction loop settling time, Tso (defined as the time taken for |eθ(t)|
to fall to and stay below 5% of its peak value following a disturbance). Comparing
the coefficients of the same degree in (29) and (30) then yields the required values
of observer gains for the chosen settling time, Tso.

kθ =
18
Tso

, kω =
108
T2

so
, kΓ =

216Jr

T3
so

. (31)
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Fig. 5. Block diagram of motor side observer in Simulink

In spite of constant motor load torque assumed during observer real time model for-
mulation its estimate, ΓL, will follow a time varying motor load torque as faithfully
as observer settling time, Tso is reduced.

4. Verification by Simulation

Block diagram of overall control system for position control of the drive with
flexible coupling in Matlab-Simulink is shown in Fig. 6.

The simulation results for position control of the drive with flexible coupling
are presented in Fig. 7. Computational step is h=1e-4 s, which corresponds to the
sampling frequency achieved during a previous implementation of the FDC algo-
rithm for position control. All the simulations are carried out with zero initial state
variables and a step load position demand, θL dem =6,28 radians and a prescribed
settling time of Tss=0,1 s.

An external load torque was simulated as a sinus function, ΓLe = Γmax sin ωLt,
where Γmax=1 Nm, ωL=20 s−1. This torque was applied at t=0,6 s, being ze-
ro for the time interval t<0,6 s. The settling time of the speed control loop,
Tω was prescribed as Tω=Tss/2, while settling time of both observers was equal
and set as Tso=TsO=0,1Tss. Moments of inertia of motor and load were equal,
JL=JR=0,0015 kgm2, while spring constant Ks=24 Nm/rad.

Subplot (a) shows the ideal position response computed from prescribed transfer
function (11) together with a real response of the control system to the step position
demand, θdem=6,28 rad, including error between them magnified 2 times. As can be
seen observed and real position response show significant, though not very large,
departure from the ideal performance, which is due to mainly non-zero iteration
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Fig. 6. Overall position control system block diagram in Simulink

interval as well as time delays in motor torque estimation. A torsion deflection of
the spring is evident from time function of rotor angle, θR in subplot (b), where
the oscillations with occur immediately after start-up of the drive and also for
t>0,6 s when sinusoidal oscillations with ωL=20 s−1 due to applied load torque are
visible. Subplot (b) also shows an estimated rotor speed, θ∧R from load side observer
including error between them magnified 10 times.

Subplot (c) shows the angular velocity of the load, ωL together with its estimate,
ω∧L and error between them magnified 10 times. Both functions are indicating that the
acceleration period is followed by the deceleration period, as expected. Oscillations
due to compensation of spring deflection during transients together with oscillations
in steady state compensating applied load torque are clearly seen from function of
rotor speed, ωR in subplot (d). This subplot also contains the estimate of rotor speed,
ω∧R together with their error magnified 10 times confirming correct function of load
side observer. Electrical torque, Γel together with its estimate, Γ∗el from motor side
observer are shown in subplot (e). As can be seen the electrical torque, Γel varies
to counteracts the torque applied to the shaft of the motor, ΓL. In the steady state,
the electrical torque is transmitted via the torsion spring to counteract the external
load torque, ΓLe applied to the load. It should be noted that the inner FDC speed
control loop counteracts the real torque applied to the rotor, ΓL but the external load
torque, ΓLe, still acts on the load mass. Proper operation of the load torque observer
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Fig. 7. Simulation results for position control of the drive with PMSM and flexible coupling
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is evident in subplot (f) where functions of applied load torque, ΓLe together with
ist estimate, Γ∧Le, follow each other. In spite of some departure from the ideal per-
formance, the error between applied and estimated torque is mainly due to non-zero
iteration interval and can be reduced if observer settling time, Tso is reduced.

5. Conclusion

A position control system based on principles of state-space control and forced
dynamics control for electric drives with PMSM and flexible couplings between
motor and load has been presented and verified by simulations. Implementation
of two observers enables to eliminate position sensor on motor side. Presented
simulations confirm that the derived position control algorithm is capable follow
prescribed ideal position response with relatively small delay.

The designed observers on motor side and load side have non-oscillatory cha-
racter and provide estimates of all state variables for control algorithm including
external load force acting on the shaft of PMSM and load torque on the load side.

Developed control system is model based therefore further investigations should
be carried out with regard to the parameters of motor and load mismatches. Due
to prescribed speed dynamics the robustness of the FDC speed control system
could be improved by adding an outer model reference adaptive control loop. The
experimental implementation of the proposed load position control algorithm will
follow as soon as possible.
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