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Abstract: 

Scheduling buses in public transport systems consists in assigning trips to vehicle blocks. To minimize the cost of fuel 
and environmental impact of public transport, the number of vehicle blocks used should be as small as possible, but 

sufficient to cover all trips in a timetable. However, when solving real life transportation problems, it is difficult to 

decide whether the number of vehicle blocks obtained from an algorithm is minimal, unless the actual minimal number 
is already known, which is rare, or the theoretical lower bound on the number of vehicles has been determined. The 

lower bound on the number of vehicle blocks is even more important and useful since it can be used both as a parameter 

that controls the optimization process and as the minimum expected value of the respective optimization criterion. 
Therefore, methods for determining the lower bound in transportation optimization problems have been studied for 

decades. However, the existing methods for determining the lower bound on the number of vehicle blocks are very 
limited and do not take multiple depots or heterogeneous fleet of vehicles into account. In this research, we propose a 

new practical and effective method to assess the lower bound on the number of vehicle blocks in the Multi-Depot 

Vehicle Scheduling Problem (MDVSP) with a mixed fleet covering electric vehicles (MDVSP-EV). The considered 
MDVSP-EV reflects a problem of public transport planning encountered in medium-sized cities. The experimental 

results obtained for a real public transport system show the great potential of the proposed method in determining the 

fairly strong lower bound on the number of vehicle blocks. The method can generate an estimated distribution of the 
number of blocks during the day, which may be helpful, for example, in planning duties and crew scheduling. An 

important advantage of the proposed method is its low calculation time, which is very important when solving real life 

transportation problems. 
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1. Introduction 

Vehicle scheduling problem (VSP), also called 

“blocking”, is an important part of the public 

transport planning and describes the process of as-

signing the trips of a timetable to vehicle blocks. 

Given a timetable, the quality of vehicle schedules 

is often measured by the minimum number of vehi-

cles required to cover all trips (Ceder, 2007), which 

translates directly to the environmental impact of a 

public transport, and to fixed and labor costs. In 

practice, vehicle scheduling is usually considered 

under different requirements, like the existence of 

more than one depot, a heterogeneous fleet with 

multiple vehicle types, the permission of trips varia-

ble departure times and further restrictions on the 

trips of the buses (Bunte and Kliewer, 2009). 

The blocks in the basic VSP are defined as se-

quences of trips made by one vehicle from an initial 

or home depot to the same depot. The objective is to 

minimize the operational costs of vehicles usage. 

Solving this problem is of great importance for pub-

lic transport operators. The most important (often 

depending on the company) features that define the 

structure of the VSP can include: 

− number of depots – two basic cases are distin-

guished here: single depot (SD VSP) or multi-

ple depots (MD VSP) – MD VSP has been 

proven to be NP-hard (Lübbecke et al. 2010); 

− number of line trips – this parameter is deter-

mined by a timetable and is usually constant; in 

large public transport systems the number of 

trips may exceed 5,000; 

− multiple vehicle types and their assignment to 

individual depots; in practice, some additional 

restrictions may arise, e.g., on the allocation of 

specific vehicle types to lines/trips; 

− limitations on depots and/or charging points ca-

pacities – number of possible vehicles charged 

at the time; 

− parameters and constraints relating to different 

duration of layovers between two service trips; 

− minimum and maximum block length; 

− preferences and restrictions for changing lines 

within a block; 

− other parameters specific to in-company con-

straints. 

In this paper, we consider the Multi-Depot Vehicle 

Scheduling Problem (MDVSP) with a mixed fleet 

covering electric buses. The MDVSP problem is 

considered to be NP-hard (Kisielewski, 2019; Olsen 

et al., 2022; Perumal et al., 2022; Zhang et al., 2022), 

therefore, computational times of exact methods can 

be very high, even for instances of a moderate size. 

One of the possible ways to improve performance of 

the optimization process is to find a rigorous bound 

(lower bound (LB) for minimization problems and 

upper bound (UB) for maximization problems) on 

the optimal solution. The computed bound can be 

used to guide the search for efficient solutions or to 

evaluate the quality of approximate solutions. Meth-

ods for determining the lower bound in transporta-

tion optimization problems have been studied for 

decades. However, the existing methods are very 

limited and do not take multiple depots or heteroge-

neous fleet into account, and LB estimation time for 

larger problems is long (strongly nonlinear wrt the 

size of the problem). In this paper, we propose an 

efficient method for computing the lower bound on 

the number of vehicle blocks in MDVSP with a 

mixed fleet covering electric buses. 

The rest of the paper is organized as follows. Section 

2 presents an overview of the related literature. The 

considered problem is defined in Section 3 and the 

proposed method is introduced in Section 4. Section 

5 is devoted to experimental results. The paper ends 

with concluding remarks. 

 

2. Literature review 

The lower bound (LB) is used within Branch-and-

Bound (B&B) methods to prevent exploration of 

suboptimal regions of the search space. The typical 

techniques to find LBs within B&B include Linear 

Programming relaxation (LP relaxation) (Caprara et 

al. 1999), column generation (Lübbecke et al. 2010) 

and Lagrangian Relaxation (LR) (Fisher, 2004). The 

column generation technique adds cutting planes to 

the dual optimization problem to improve the com-

puted LB (Morrison, 2016).  

Akker et al. (2002) find that for many NP-hard com-

binatorial minimization problems the strong LB on 

the optimal solution can be computed by formulat-

ing the problem as an integer linear program with a 

huge number of variables and then solving the linear 

programming relaxation through a column genera-

tion method. This approach has led to state-of-the-

art B&B algorithms for many combinatorial optimi-

zation problems. Lagrangian relaxation, in turn, pro-

ceeds by dualizing a subset of constraints. This 

method results in a LB that dominates the one deter-

mined by the column generation method. However, 
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column generation shows better convergence and, 

therefore, is usually faster (Akker et al., 2002). 

Depending on the nature of an optimization prob-

lem, the LB has different uses. Byung-In et al. 

(2012) calculated the LB for the VSP (defined as an 

assignment problem) using the Hungarian method 

with a special setting of cost between two trips. 

These LBs can provide reference to evaluate the so-

lution quality of the heuristic methods. Based on the 

experimental results, the LB provides tight bounds 

for the small problems. However, its tightness for 

large problems has not been fully evaluated yet. The 

gap between the LB and the solution of the heuristic 

methods increases as the problem size increases. 

An interesting investigation was presented by Ri-

beiro and Soumis (1994). They used LB in Multi De-

pot Vehicle Scheduling (MD-VSP) problem defined 

as an integer programming and found the relation-

ship between the bounds obtained in different ways, 

i.e., by the assignment relaxation, the shortest path 

relaxation, the additive technique, Lagrangian de-

composition, column generation and linear pro-

gramming. The conclusion from this research is that 

the linear relaxation of MD-VSP provides a stronger 

LB than does the additive bound. The additive 

bound technique cannot provide tighter bounds than 

those obtained by Lagrangian decomposition and 

not better than the linear programming bound in the 

case of the MD-VSP. The Column Generation 

Bound is at least as good as the additive one. The 

quality of the LBs provided by the column genera-

tion is very good in practice and does not deteriorate 

with the increase in the number of trips or depots 

(Ribeiro and Soumis, 1994). 

Bunte and Kliewer (2009) present the different qual-

ities of the lower bounds obtained by the different 

modeling approaches for the MD-VSP. They re-

ported that lower bound obtained by the LP solution 

of the single-commodity model with subtour break-

ing constraints is smaller or equal to the single-com-

modity model with assignment variables (Mesquita 

and Paixão,1999). Both single-commodity formula-

tions provide weaker LP bounds than the (connec-

tion-based) multi-commodity flow formulation 

(Mesquita and Paixão, 1999). The LP bound of the 

multi-commodity model and the set partitioning 

model have the same value. 

Freling et al. (2003) utilized both column generation 

as well as Lagrangian relaxation to generate LB for 

integrated vehicle and crew scheduling problem. As 

they found LB is on average approximately 10% of 

the number of timetabled trips. 

As apparent from the comparison of results MD-

VSP made by Wen et al. (2016), the results of MD-

VSP often do not provide a tight LB to the E-VSP 

(criterion function – cost). This is caused by the re-

stricted driving range in the E-VSP that forces vehi-

cles to recharge which increases deadheading time 

and decreases vehicle utilization. In their opinion, a 

better LB for the E-VSP can be investigated, which 

is not trivial due to a high complexity introduced by 

the partial charging. 

Stern and Ceder (1983) applied LB to the minimum 

fleet size problem in public transport – the coverage 

of scheduled trips with and without technical/dead-

head trips. They constructed step functions (deficit 

functions) for each terminal in the schedule repre-

senting the net number of trip departures fewer than 

arrivals up to each time. The maximum value of the 

overall deficit function represents a LB on the mini-

mum fleet size. This lower bound was even further 

improved by Ceder (2002) by looking into artificial 

extensions of certain trip-arrival points without vio-

lating the generalization of requiring all possible 

combinations for maintaining the fleet size at its 

lower bound. Ceder also used the same technique in 

other papers (Ceder, 2007; Ceder, 2011). 

 

3. Problem definition 

Given a set of timetabled trips with fixed travel (de-

parture and arrival) times and start and end locations 

as well as traveling times between all pairs of depots, 

the objective is to find an assignment of trips to ve-

hicles such that: 

− each trip is covered exactly once, 

− each vehicle performs a feasible sequence of 

trips, 

− the goal function is minimized. 

A vehicle “block” is the schedule of travel of a vehi-

cle for a given day, including: (1) a pull-out from the 

depot, (2) a sequence of trips from the timetable, (3) 

any dead-head trips, and (4) a pull-in back to the de-

pot (Ceder, 2007; Perumal et al., 2022). 

Scheduling of vehicle blocks is a special case of 

multi-depot vehicle scheduling problem (MD-VSP) 

where, usually, the goal is to minimize the total cost 

of trips including deadhead trips. The subject litera-

ture describes several different approaches to solve 

MD-VSP. The first group of models include single-

commodity models in which a graph represents one 
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node per trip and additional nodes represent vehicles 

as in Single-Commodity Model with Subtour As-

signment Variables Breaking Constraints (Car-

paneto, 1989) or depots as in Single-Commodity 

Model with Assignment Variables (Mesquita and 

Paixão, 1992). Another group of models are Multi-

Commodity models which, usually, extend the net-

work-flow model for SD-VSP (Bodin et al., 1983). 

In such models, a graph has two types of arcs: arcs 

denoting that the next trip can be serviced after the 

previous trip by the same vehicle block (relational 

arcs) and deadhead arcs (pull-in and pull-out). The 

Connection-Based Networks and Time-Space Net-

works models can be used as well. In the Connec-

tion-Based Networks model, the possible connec-

tions between the timetabled trips are modeled by 

considering all trip compatibilities explicitly (Ber-

tossi et al., 1987; Lamatsch, 1992), whereas in the 

Time-Space Networks model, possible connections 

between groups of compatible trips are aggregated 

(Kliewer et al., 2002; Kliewer et al., 2006). In the 

Set Partitioning model, in turn, all feasible routes for 

the vehicles are enumerated and then only those 

routes that fulfill all restrictions are considered (Ri-

beiro and Soumis, 1994). This model is used with a 

column generation algorithm. 

Our model, presented below, uses the currently most 

widely used Multi-Commodity with Connection-

Based Networks approach. 

In Duda et al. (2022), we presented a complex model 

that consists of an objective function that is a 

weighted combination of five components and con-

straints that precisely check whether there is enough 

state of charge (SoC) left so that the bus can perform 

a specific trip and taking into account the necessary 

recharging of the battery. In this work, we focus on 

the most important, from the business point of view, 

component of the objective function, i.e., on the 

minimization of the number of blocks used to cover 

all trips. Therefore below we present a single-crite-

rion version of this model. Contrary to most of the 

models presented in the literature, the considered 

model takes into account, however, a heterogeneous 

fleet of buses (bus types) including electric ones. 

The nomenclature used to define the optimization 

model is presented in Table 1. 

A mixed integer linear programming model for the 

considered MD-VSP with a heterogeneous fleet  

covering electric buses can be formulated as fol-

lows: 
 

minimize ∑ 𝑍𝑘

𝑘∈𝐾

 (1) 

 

subject to: 
 

∑ ∑ 𝑋𝑖𝑗𝑘

𝑗:(𝑖,𝑗)∈𝐴𝑘∈𝐾

= 1, ∀𝑖 ∈ 𝑇 (2) 

 

∑ 𝑋𝑖𝑗𝑘

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑋𝑗𝑖𝑘

𝑗:(𝑗,𝑖)∈𝐴

= 0, ∀𝑖 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (3) 

 

∑ ∑ 𝑋𝑎𝛿𝑖𝑘

𝑖∈𝑉𝛿∈𝐷∖{Δ(𝑘)}

= 0,   ∀ 𝑘 ∈ 𝐾 (4) 

 

∑ ∑ 𝑋𝑖𝑏𝛿𝑘

𝑖∈𝑉𝛿∈𝐷∖{Δ(𝑘)}

= 0, ∀𝑘 ∈ 𝐾 (5) 

 

𝑀𝑍𝑘 − ∑ 𝑋𝑖𝑗𝑘

(𝑖,𝑗)∈𝐴

  ≥ 0, ∀𝑘 ∈ 𝐾 (6) 

 

∑    𝑍𝑘

𝑘∈𝐾,Δ(𝑘)=𝛿,Π(𝑘)=𝜋

≤ 𝑐𝜋
𝛿 ,    ∀𝛿 ∈ 𝐷, ∀𝜋 ∈ 𝑃 (7) 

 
𝑋𝑖𝑗𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (8) 
 

𝑍𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾 (9) 

 

The objective function (1) takes into account only 

the number of blocks to cover all trips, which in 

many cases is the most important business criterion. 

The constraints (2)– (9) have the following meaning: 

− constraint (2) ensures that each trip is operated 

by only one vehicle, 

− constraint (3) conserves the flow, 

− constraint (4) states that each vehicle starts at a 

designated depot,  

− constraint (5) means that each vehicle ends at a 

designated depot, 

− constraint (6) specifies the use of the block/ve-

hicle, 

− constraint (7) limits the number of vehicles 

type p available at the depot δ, 

− constraints (8) and (9) define the domains of the 

variables. 
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Table 1. Nomenclature used to define optimization model 

Indices 

𝑖 node representing the service trip or the starting point of a deadhead trip 

(𝑖, 𝑗) trip connection arc that connects two consecutive service trips or service trip and a deadhead trip 

𝑘 vehicle block 

δ depot 

π bus type 

𝑡 time period (here minute) 

ℎ service trip 

     w break (waiting time in minutes) between trips 

Sets 

 𝑉 set of all nodes in the trip graph (depots, trip endpoints, charging places, etc.) 

 𝑇 set of trip nodes 

 𝐴 set of all edges of the transport graph; there are four types of edges: (i) 𝐴1 – connecting depots with service 

trips (pull-out trips), (ii) 𝐴2 – connecting two service trips, (iii) 𝐴3 – connecting service trips with endpoint de-

pots (pull-in trips), (iv) 𝐴4 – connecting service trips with charging point 

 𝐷 set of depots 

 𝑃 set of vehicle types 

  𝐾 set of vehicle blocks 

      τ set of time periods (here minutes) 

      H set of service trips 

Parameters 

𝑑𝑖𝑗 length of deadhead trip on arc (𝑖, 𝑗) [km] 

𝑡𝑖𝑗 duration of deadhead trip on arc (𝑖, 𝑗) [min.] 

𝑧𝑖 scheduled time of departure for trip 𝑖 

𝑐π
δ number of available vehicles of type 𝜋 in depot δ 

ℎ minimal working time of vehicle block [min.] 

𝑀 constant, very large positive number 

Π(𝑘) vehicle type for vehicle block 𝑘 

Δ(𝑘) home depot for vehicle block 𝑘 

𝑎δ begin node (depot) 

𝑏𝛿 end node (depot) 

    W break (waiting time) between trips 

Variables 

𝑋𝑖𝑗𝑘 binary decision variable, 𝑋𝑖𝑗𝑘 = 1, if vehicle block 𝑘 carries out the deadhead trip on arc (𝑖, 𝑗) ∈ 𝐴 or carries 

out trip 𝑗 after trip 𝑖 
𝑍𝑘 auxiliary binary variable, 𝑍𝑘 = 1, if vehicle block 𝑘 is used in the schedule 

 

4. Method for Computing Lower Bound on 

Number of Vehicles 

In our considerations, we assume that the vehicle 

blocks start their trips at the beginning of a minute 

and end their trips at the end of a minute. This means 

that if one trip starts at the minute zm and the other 

ends at that minute, then two vehicle blocks are 

needed to service these two “overlapping” trips. 

Given the above assumption, the lower bound (LB) 

on the number of vehicle blocks can be determined 

from the formula: 
 

𝐿𝐵𝛼 = 𝑚𝑎𝑥𝑡=1,…,𝜏(∑ 𝑥ℎ,𝑡ℎ∈𝐻 )  (10) 

where 𝜏 is the number of minutes in the considered 

time horizon, H is the set of all service trips to be 

covered, and xh,t is a binary variable that takes the 

following values: 

 

𝑥ℎ,𝑡 = {
1 − if h-th trip is serviced in minute t

0 − otherwise
 

 

The formula (10) is very simple and intuitive. How-

ever, it takes into account only those vehicles that in 

the given minute are during the trip, start the trip or 

end the trip, whereas there are also vehicles that wait 

for their trips, they should also be taken into account. 
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The LB for the number of vehicles that wait for their 

trips can be computed as follows: 
 

𝐿𝐵𝛽 = max𝑡=1,…,𝜏−1 

(max(∑ 𝑠ℎ,𝑡+1ℎ∈𝐻 − ∑ 𝑓ℎ,𝑡ℎ∈𝐻 , 0)),  
(11) 

 

where sh,t+1 and fh,t are binary variables that take, re-

spectively, the following values: 
 

𝑠ℎ,𝑡+1 = {
1 − if h-th trip starts in minute t + 1 

0 − otherwise
 

𝑓ℎ,𝑡 = {
1 − if h-th trip ends in minute t 

0 − otherwise
 

 

The formula (11) allows zero breaks which may not 

be in accordance with the requirements set by some 

enterprises, related to the minimum break time or 

which may result, for example, from the time neces-

sary to board the vehicle by the passengers. There-

fore, we proposed a modification of the formula (11) 

which takes into account breaks: 
 

𝐿𝐵𝛽,𝑊 = 𝑚𝑎𝑥𝑡=𝑊+1,…,𝜏−1 

(max(∑ 𝑠ℎ,𝑡+1ℎ∈𝐻 − ∑ 𝑓ℎ,𝑡ℎ∈𝐻 , 0) +

∑ ∑ 𝑓ℎ,𝑡−𝑤ℎ∈𝐻
𝑊
𝑤=1 ),  

(12) 

 

where W is the length of a break (waiting time) given 

in minutes. The value of W can be set as a parameter 

of the method. 

To make the value of LB,W more precise, the for-

mula (12) can be further extended by taking into ac-

count loops/depots where trips start or end: 
 

𝐿𝐵𝛽,𝐼
𝐷 = max𝑡=𝑊+1,…,𝜏−1 

(∑ (max(∑ 𝑠ℎ,𝑡+1
𝛿

ℎ∈𝐻 − ∑ 𝑓ℎ,𝑡
𝛿

ℎ∈𝐻 , 0) +𝛿∈𝐷

∑ ∑ 𝑓ℎ,𝑡−𝑤
𝛿

ℎ∈𝐻
𝑊
𝑤=1 )),  

(13) 

 

where D is the set of loops/depots, and 𝑠ℎ,𝑡+1
𝛿  and 

𝑓ℎ,𝑡+1
𝛿  are binary variables that take the following 

values: 
 

𝑠ℎ,𝑡+1
𝛿 = {

1 − if ℎ − th trip starts in minute 𝑚 + 1 𝑖𝑛
𝑙𝑜𝑜𝑝

𝑑𝑒𝑝𝑜𝑡
𝛿

0 − otherwise
  

 

𝑓ℎ,𝑡
𝛿 = {

1 − if ℎ − th trip ends in minute 𝑚 + 1 𝑖𝑛
𝑙𝑜𝑜𝑝

𝑑𝑒𝑝𝑜𝑡
𝛿

0 − otherwise
  

 

If no breaks are required between trips, the formula 

(13) takes the form: 

𝐿𝐵𝛽
𝐷 = max𝑡=1,…,𝜏−1 

(∑ (max(∑ 𝑠ℎ,𝑡+1
𝛿

ℎ∈𝐻 − ∑ 𝑓ℎ,𝑡
𝛿

ℎ∈𝐻 , 0))𝛿∈𝐷 ).  
(14) 

 

To adapt the formula (14) to the Multi Vehicle Type 

problem, it is further extended by taking into ac-

count the types of vehicles (obviously, we need to 

know exactly which type of a vehicle will serve the 

trip: 

 

𝐿𝐵𝛽,𝑊
𝐷,𝑃 = max𝑡=𝐼+1,…,𝜏−1 

(∑ ∑ (max(∑ 𝑠ℎ,𝑡+1
𝛿,𝑝

ℎ∈𝐻 −𝑝∈𝑃𝛿∈𝐷

∑ 𝑓ℎ,𝑡
𝛿,𝑝

ℎ∈𝐻 , 0) + ∑ ∑ 𝑓ℎ,𝑡−𝑤
𝛿,𝑝

ℎ∈𝐻
𝑊
𝑤=1 ))  

(15) 

 

where P is a set of vehicle types, and 𝑠ℎ,𝑡+1
𝛿,𝑝

 and 𝑓ℎ,𝑡
𝛿,𝑝

 

are binary variables that take the following values: 

 

𝑠ℎ,𝑡+1
𝛿,𝑝

=

= {
1 − if ℎ − 𝑡ℎ trip starts in minute 𝑡 + 1 in 

𝑙𝑜𝑜𝑝

𝑑𝑒𝑝𝑜𝑡
𝛿  

and will serviced by vehicle of type 𝑝
0 − otherwise

 

 

𝑓ℎ,𝑡
𝛿,𝑝

= {
1 − if ℎ − th trip ends in minute 𝑡 in 

𝑙𝑜𝑜𝑝

𝑑𝑒𝑝𝑜𝑡
𝛿  

and will serviced by vehicle of type 𝑝
0 − otherwise

 

 

If no breaks are required between trips, then the for-

mula (15) takes the form: 

 

𝐿𝐵𝛽
𝐷,𝑃 = max𝑡=1,…,𝜏−1 

(∑ ∑ (max(∑ 𝑠ℎ,𝑡+1
𝛿,𝑝

ℎ∈𝐻 −𝑝∈𝑃𝛿∈𝐷

∑ 𝑓ℎ,𝑡
𝛿,𝑝

ℎ∈𝐻 , 0)))  

(16) 

 

If vehicle types are known but start and end points 

are unknown, then the LB for the number of vehicle 

blocks that await their trips should be computed 

from the following formula: 

 

𝐿𝐵𝛽,𝑊
𝑃 = max𝑡=𝑊+1,…,𝜏−1 

(∑ (max(∑ 𝑠ℎ,𝑡+1
𝑝

ℎ∈𝐻 − ∑ 𝑓ℎ,𝑡
𝑝

ℎ∈𝐻 , 0) +𝑝∈𝑃

∑ ∑ 𝑓ℎ,𝑡−𝑤
𝑝

ℎ∈𝐻
𝑊
𝑤=1 ))  

(17) 

 

where 𝑠ℎ,𝑡+1
𝑝

 and 𝑓ℎ,𝑡
𝑝

 are binary variables that take 

the following values: 
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𝑠ℎ,𝑡+1
𝑝

= {
1 − if ℎ − th trip starts in minute 𝑡 + 1   

and will serviced by vehicle of type 𝑝
0 − otherwise

 

 

𝑓ℎ,𝑡
𝑝

= {
1 − if ℎ − th trip ends in minute 𝑡  

and will serviced by vehicle of type 𝑝
0 − otherwise

 

 

If no breaks are required between trips, then the for-

mula (17) takes the form: 
 

𝐿𝐵𝛽,𝑊
𝑃 = max𝑡=𝑊+1,…,𝜏−1 

(∑ (max(∑ 𝑠ℎ,𝑡+1
𝛿,𝑝

ℎ∈𝐻 − ∑ 𝑓ℎ,𝑡
𝛿,𝑝

ℎ∈𝐻 , 0))𝑝∈𝑃 )  
(18) 

 

Based on the above presented formulas, we propose 

the following variants (depending on the level of de-

tail of the data held) for computing the LB on the 

number of vehicle blocks (assuming that the LBs α 

and β refer to the same minute): 
 

𝐿𝐵1 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽 

𝐿𝐵2 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽
𝐷 

𝐿𝐵3 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽
𝐷,𝑃

 

𝐿𝐵4 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽
𝑃 

𝐿𝐵1,𝐼 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽,𝑊 

𝐿𝐵2,𝐼 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽,𝑊
𝐷  

𝐿𝐵3,𝐼 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽,𝑊
𝐷,𝑃

 

𝐿𝐵4,𝐼 = 𝐿𝐵𝛼 + 𝐿𝐵𝛽,𝑊
𝑃  

 

The following inequalities hold between the pro-

posed variants of the LB: 
 

𝐿𝐵1 ≤ 𝐿𝐵2 ≤ 𝐿𝐵3 

𝐿𝐵1 ≤ 𝐿𝐵4 ≤ 𝐿𝐵3 

𝐿𝐵1,𝐼 ≤ 𝐿𝐵2,𝐼 ≤ 𝐿𝐵3,𝐼 

𝐿𝐵1,𝐼 ≤ 𝐿𝐵4,𝐼 ≤ 𝐿𝐵3,𝐼  
 

5. Computational experiments 

5.1. Experiments for Real-World Problem In-

stances 

The proposed method for determining the lower 

bound on the number of vehicle blocks was tested 

using real data coming from one of the cities in Po-

land. The selected city is a medium size city (with 

the population ranging from 100 to 200 thousand), 

which places it in the top 10 Polish cities in terms of 

the number of inhabitants. 

The selected three problem instances reflect typical 

vehicle blocks scheduling problems in a public 

transport company in the analyzed city. The largest 

problem instance includes 1,257 service trips, the 

medium-sized instance has 803 service trips, and the 

smallest one covers 635 service trips. The given in-

stance sizes are typical for the working week, Satur-

days and Sundays, and holidays, respectively. The 

number of trips typical for Sunday is therefore half 

that of a weekday. 

Experiments for real MD-VSP instances were car-

ried out based on the previously presented model. 

The calculations were performed on a computer with 

an AMD Ryzen 4800H 2.9 GHz processor (8 cores, 

16 threads) and 32GB RAM. CPLEX Solver version 

20.1 was used to calculate the MILP model, and the 

LB heuristic was created in C# compiled for the 

.NET 6 framework. 

The results for the MILP model are presented in Ta-

ble 2. The time after which the algorithm was able 

to return LB was recorded (optimization time for 

larger instances was much longer). As can be seen, 

the time to obtain the LB increases strongly nonlin-

early with the increase in the number of trips. 
 

Table 2. Results of MILP model for considered three 

problem instances (determined value of LB 

and time used to compute it) 
Number of service trips 

635 803 1257 

LB 
Execution 

time [ms] 
LB 

Execution 

time [ms] 
LB 

Execution 

time [ms] 

29 12,000 39 25,000 60 167,000 

 

The results of the MILP model for the considered 

three problem instances (determined value of LB 

variants and time used to compute it) are presented 

in Table 3. For the smallest and the largest instances 

of the problem, the LB values differ depending on 

the variant of its calculation, while the values for 

both LB2 and LB3 are always identical. Comparing 

these values to the LB values calculated by CPLEX 

solver, they are 10–14% lower. It is worth noting 

that the greater the number of trips is, the smaller is 

the difference. 
 

Table 3. Results obtained using proposed method for 

three problem instances (determined value 

of LB and time used to compute it) 

Lower 

Bound 

for-

mula 

Number of service trips 

635 803 1257 

LB 
Execution 

time [ms] 
LB 

Execution 

time [ms] 
LB 

Execution 

time [ms] 

LB1 24 0.2 34 0.3 52 0.4 

LB2 25 4.4 34 4.4 54 6.0 

LB3 25 7.5 34 15.2 54 28.6 

LB4 24 0.4 34 0.5 53 0.8 
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5.2. Assessment of Impact of Waiting Time Pa-

rameter on LB Values 

The experiments were also carried to verify how the 

waiting time (W) between the trips impacts the value 

of LB. The results obtained are presented in Tables 

4-6. 

For the smallest instance (Table 4), LB increases 

along with the increase of waiting time, however the 

same values of LB are obtained for all its variants 

(LB1–LB4). It is worth noting that in two cases 

(LB2 and LB3) 1 minute waiting time does not in-

crease the LB value, similarly there is no difference 

in LB values between 2 and 3 minute waiting times, 

as well as between 4 and 5 minute waiting times. 

In the case of the medium instance (Table 5), we no 

longer observe any increases in LB if the break time 

is increased by 1 minute, and in the case of LB1 also 

by 2 minutes. Contrary to the smaller instance, there 

is a significant two-minute difference if W = 2 and 

W = 3. We do not observe such a large change for 

increasing W by the next minutes. 

For the largest instance (Table 6), in each case there 

is already an increase in LB, if the gap is increased. 

However, it is interesting that for larger gaps (W = 4 

and W = 5) the difference in LB values obtained by 

different variants disappears, while for the lower W 

it was even 2 minutes. 

 

Table 4. Results of analysis of impact of waiting 

time (W) parameter on LB value for small-

est data instance (635 service trips) 

  

Break duration W [min.] 

0 1 2 3 4 5 

LB1 24 25 27 27 29 29 

LB2 25 25 27 27 29 29 

LB3 25 25 27 27 29 29 

LB4 24 25 27 27 29 29 

 

Table 5. Results of the analysis of impact of waiting 

time (W) parameter on LB value for me-

dium-sized data instance (803 service trips) 

  

Break duration W [min.] 

0 1 2 3 4 5 

LB1 34 34 34 36 37 38 

LB2 34 34 35 37 38 38 

LB3 34 34 35 37 38 38 

LB4 34 34 35 36 37 38 

 

Table 5. Results of the analysis of impact of waiting 

time (W) parameter on LB value for largest 

instance (1257 service trips) 

  

Break duration W [min.] 

0 1 2 3 4 5 

LB1 52 54 56 58 60 62 

LB2 54 56 58 59 60 62 

LB3 54 56 58 59 60 62 

LB4 53 55 57 58 60 62 
 

Summing up, on the basis of the results presented in 

Tables 4–6, it can be concluded that the greater the 

number of included information, the higher the LB 

value. For the largest instance, the difference be-

tween the LB1 value, which does not take into ac-

count the information on vehicle types and loops, 

and the LB3 value, which takes into account both 

these information, was +2, which is a difference of 

nearly 4% of the total number of blocks. Taking into 

account the minimum length of breaks between con-

secutive trips (which can also be treated as a safety 

buffer for potential delays during the journey), the 

required number of vehicles increases, on average 

by 2. In the case of a minimum break between trips 

of at least 4 minutes, all the proposed methods of de-

termining the LB value allowed to obtain the same 

result – 60 vehicles. For the 5-minute waiting time, 

also all variants of LB calculation obtained the same 

result. 

The optimal number of blocks for the problem under 

consideration was 60. To determine it, apart from all 

the data used to calculate the presented LB values, it 

is also necessary, inter alia, to have the following in-

formation: 

− travel time from the depot to the loop/end of the 

line, 

− number of vehicles of a certain type in a given 

depot, 

− travel time between loops/line ends. 

The time to compute the LB value using mixed inte-

ger linear programming (MILP) for the largest in-

stance was almost 3 minutes, while it took 1/3 sec-

ond to compute all of the LB values presented. The 

difference between the optimal value and the LB 

value using the largest range of information (LB3) 

was 10%. Taking into account the computation time 

as well as the linear computational complexity of the 

proposed method, it seems to be an efficient solu-

tion, especially for more complex problems. 
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An important aspect of the proposed LB determina-

tion methods is that it is possible to determine a LB 

value for each time period (in the case under consid-

eration, for each minute) within the assumed time 

horizon. The Figures 1–3 show the LB3 value for the 

analyzed problem instances. 

For the smallest instance (corresponding to trips ser-

viced on Sunday – Fig. 1), the number of blocks in-

creases sharply from around 6:00 a.m., and then re-

mains at a certain level (an average of 20 blocks), 

only to drop at the end of the day (around 

11:00 p.m.) when only a few trips are serviced. 

In the case of the average instance (Fig. 2), we do 

not observe such a flattening of the number of blocks 

during the day. The number of blocks needed in-

creases successively to around 10:00 a.m.–1:00 p.m. 

(the average number of blocks is approximately 

26– 27), and then it starts to drop slightly (with an 

average level of approximately 20 blocks) until 

11:00 p.m. 

Finally, for the largest instance (common day – Fig. 

3) it is already clear that LB for blocks increases at 

two peak points (morning and afternoon), and in the 

middle of the day it remains at the average level of 

approximately 30 blocks. In the evening, the number 

of trips drops, but not as smoothly as for the smaller 

instances. 

Thanks to the possibility of generating graphs, one 

can clearly see the number of necessary vehicles 

during the day. It also allows to observe periods of 

increased value in the number of trips, which corre-

spond to peak times. The presented visualization of 

LB values can be a tool supporting decisions in the 

field of building schedules or arranging services. 
 

 
Fig. 1. LB values for smallest instance in different time periods 
 

 
Fig. 2. LB values for smallest instance in different time periods 
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Fig. 3. Change of LB3 during day 
 

6. Conclusions 

We presented a new method for computing the lower 

bound on the number of vehicle blocks in Multi-De-

pot Vehicle Scheduling Problem with a fleet cover-

ing electric buses. The performance of the method 

was tested on real data coming from the public 

transport company in a medium-sized city in Poland. 

The proposed method is able to efficiently estimate 

LB for the MD-VSP problem, and additionally takes 

into account different vehicle types including elec-

tric buses. Its execution time, even for large problem 

instances, is at maximum a several dozen millisec-

onds, while for the LB generated by OPL CPLEX 

MILP model one has to wait several minutes. In 

practice, this allows for the generation of an esti-

mated distribution of the number of blocks during 

the day (the graphs), which may be helpful, for ex-

ample, in planning duties and later also crew sched-

uling. In addition, it was shown how to use the de-

veloped LB counting method to check if the increase 

in the number of blocks is influenced by the setting 

of intervals between trips. In practice, this gives the 

opportunity to better plan security buffers and what 

follow to eliminate delays, e.g., in the case of heavy 

traffic. In our future work we plan to improve the 

proposed method by introducing additional factors, 

such as the charging time of electric vehicles. 
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