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Abstract: 

As the fundamental part of other Intelligent Transportation Systems (ITS) applications, short-term traffic volume prediction 

plays an important role in various intelligent transportation tasks, such as traffic management, traffic signal control and 
route planning. Although Neural-network-based traffic prediction methods can produce good results, most of the models 

can’t be explained in an intuitive way. In this paper, we not only proposed a model that increase the short-term prediction 

accuracy of the traffic volume, but also improved the interpretability of the model by analyzing the internal attention score 
learnt by the model. we propose a spatiotemporal attention mechanism-based multistep traffic volume prediction model 

(SAMM). Inside the model, an LSTM-based Encoder-Decoder network with a hybrid attention mechanism is introduced, 

which consists of spatial attention and temporal attention. In the first level, the local and global spatial attention mecha-
nisms considering the micro traffic evolution and macro pattern similarity, respectively, are applied to capture and amplify 

the features from the highly correlated entrance stations. In the second level, a temporal attention mechanism is employed 

to amplify the features from the time steps captured as contributing more to the future exit volume. Considering the time-
dependent characteristics and the continuity of the recent evolutionary traffic volume trend, the timestamp features and 

historical exit volume series of target stations are included as the external inputs. An experiment is conducted using data 

from the highway toll collection system of Guangdong Province, China. By extracting and analyzing the weights of the 
spatial and temporal attention layers, the contributions of the intermediate parameters are revealed and explained with 

knowledge acquired by historical statistics. The results show that the proposed model outperforms the state-of-the-art 

model by 29.51% in terms of MSE, 13.93% in terms of MAE, and 5.69% in terms of MAPE. The effectiveness of the Encoder-
Decoder framework and the attention mechanism are also verified. 
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1. Introduction 

1.1. Background 

The continuous construction of highway infrastruc-

ture has kept the highway mileage growing in China 

for decades. The country’s car ownership is also in-

creasing. As the traffic demand continues to grow, 

large cities in China and around the world have to 

deal with the traffic congestion problem, especially 

for highways as they are supposed to provide a high 

level of service. Serious traffic congestion problems 

often occur on highway during important festivals or 

holidays. To help improve traffic management strat-

egies, it is important to precisely predict traffic vol-

ume. Hence, with the development of Intelligent 

Transportation System (ITS), large amount of relia-

ble travel data has been collected, many data-driven 

methods have been proposed to solve the traffic vol-

ume prediction problem based on data generated 

from ITS. 

 

1.2. Related Work 

Previous research for traffic forecasting models can 

be classified into two categories: parametric models 

and nonparametric models. 

Parametric models have fixed parameters computed 

based on prior knowledge of the research field. The 

autoregressive integrated moving average (ARIMA) 

model is a typical traffic volume forecasting para-

metric model. Attempting to make predictions based 

on the continuity of recent traffic trends, some traffic 

prediction models using ARIMA have been pro-

posed (Karlaftis & Vlahogianni, 2011; Williams & 

Hoel, 2003; Giraka & Selvaraj, 2020). ARIMA re-

quires the time series to be highly stationary, while 

traffic volume series with small time intervals or 

small geographic coverage often fluctuates. Kalman 

filtering approach, which is another typical paramet-

ric model, is widely applied for real-time short-term 

traffic flow prediction (Guo et al., 2014; L. Zhang et 

al., 2011; Zhou et al., 2019) and is especially suita-

ble for handling large-scale traffic flow data. Traffic 

simulation models are also in the parametric model 

category, but they require a huge amount of compu-

ting power, which is not suitable for dealing with 

real-time prediction tasks. 

Unlike parametric models, non-parametric models 

are not built based on certain theoretical assump-

tions, and the parameters are not fixed in these meth-

ods. To perform satisfactory outcomes, state-of-the-

art non-parametric traffic prediction models tend to 

be data-driven. The K-nearest neighbour (KNN) 

model is applied to forecast traffic flow by adding 

the weighted sum of the volume of the same period 

of the K days with the closest recent pattern (B. Sun 

et al., 2018; Z. Wang et al., 2019; D. Xu et al., 2020; 

Li et al., 2012). Learning algorithms (2020) applied 

an adaptive KNN method for imputing missing traf-

fic data, which can also be utilized for prediction 

problems. The support vector machine (SVM), a 

popular machine learning method for time series 

prediction, is also widely applied to solve traffic pre-

diction problems (Hong, 2011; Ge et al., 2019; Qi-

ming et al., 2017; Feng et al., 2019). Another typical 

non-parametric approach employed for traffic pre-

diction is the Bayesian model (Ghosh et al., 2007; J. 

Wang et al., 2014; S. Sun et al., 2006; Yu & Cho, 

2008; Park et al., 2018). 

Neural networks, being quite widely used for traffic 

prediction in recent years, are also in the non-para-

metric model family. These models are often re-

garded as more flexible compared to traditional sta-

tistical models and outperform classical statistical 

models in accuracy (Karlaftis & Vlahogianni, 2011). 

Traffic congestion (2019) concluded that Artificial 

Neural Networks(ANN) outperformed the other in-

vestigated algorithms for predicting traffic condi-

tions. Connor et al. (1994) used a recurrent neural 

network (RNN) for time series prediction in the 

early stage. Ma et al. (2015) proposed an architec-

ture using Long Short-Term Memory (LSTM) net-

work, an improved variant of RNN, to capture non-

linear traffic dynamics, especially long temporal de-

pendency. Z. Zhao et al. (2017) proposed a novel 

traffic forecast model based on an LSTM, where a 

two-dimensional network composed of many 

memory units is deployed to consider the temporal-

spatial correlation in a traffic system. Ma et al. Ma 

et al. (2017) converted traffic dynamics to images 

via a two-dimensional time-space matrix and used a 

convolutional neural network (CNN) to learn traffic 

as images. Huang et al. Huang et al. (2014) proposed 

a deep belief network (DBN) model to learn effec-

tive features in an unsupervised fashion. Lv et al. 

(2015) applied a deep architecture model using 

stacked auto-encoders (SAEs) as building blocks to 

represent traffic features. 

More recent studies combine different models to 

capture both spatial and temporal correlation. Luo et 

al. (2019) used a KNN to select the most related 

neighbouring stations, capture their spatial features, 
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and used an LSTM to mine the temporal variability. 

Feng et al. (2019) incorporated the spatial-temporal 

correlation information with an adaptive multi-ker-

nel SVM (AMSVM) to predict short-term traffic 

flows. Predictive analytics (2016) improved SVM 

by introducing Particle Swarm Optimization (PSO) 

to find the optimal parameters. J. Xu et al. (2018) 

proposed a deep learning architecture where a CNN 

and an LSTM are used to extract the spatial and tem-

poral characteristics, respectively. Lin et al. (2019) 

employed a sparse autoencoder to extract the spatial 

features via fully connected layers and used an 

LSTM to capture the temporal features. Lu et al. 

(2020) designed a graph LSTM (GLSTM) frame-

work, in which RNN learns temporal relations and 

graph neural networks (GNNs) integrate graph 

structured and node-attributed features. Du et al. 

(2020) deployed a one-dimensional convolutional 

neural network (ID CNN) to capture the local trend 

features and used gated recurrent units (GRU) to 

capture the long temporal dependencies. 

Although neural network-based methods have been 

proven to be promising and robust for traffic predic-

tion (Lv et al., 2015), the internal mechanism of 

most above models remains unclear like a black box, 

making them less convincing in presentation. Thus, 

this is the main gap we try to fill in this paper. 

 

1.3. Contributions 

The contributions of this study mainly lie in two as-

pects: (1) Spatiotemporal attention mechanism is ap-

plied to determine the input features’ contributions 

by learning the spatial and temporal correlations. 

Although spatial and temporal features are com-

monly used in recent studies, the proposed structure 

is built with more comprehensive consideration. 

Through an in-depth inspection of the micro traffic 

evolution process and the macro traffic evolutionary 

pattern (see Sections 2.1, 2.3, and 2.4), three forms 

of correlation mechanism are illustrated, which are 

the local spatial correlation, the local temporal cor-

relation, and the global spatial correlation, respec-

tively. (2) Distinguished from the related work, the 

proposed model generates explicit scalar scores that 

measure the degree of attention that the trained 

model learnt via the attention mechanism. These 

scores indicate how much the entrance volume of 

different stations or different historical periods con-

tributes to making the prediction. The scores can 

then be verified by being compared with traffic char-

acteristics obtained from historical data (see Section 

4.2), or explained with prior knowledge (see Section 

4.3). Thus, the proposed model has improved the in-

terpretability of neural-network-based traffic predic-

tion approaches. 

 

2. Correlation mechanism analysis 

Considering the micro traffic evolution process, the 

exit flow of a toll station in a certain period origi-

nates from the vehicles that entered the highway net-

work via toll stations in a certain area over a certain 

period. These vehicles then interact with the adja-

cent vehicles, together affecting the traffic flow 

state, such as the speed, volume and density, of the 

current road section, and consequently affect the to-

tal travel time needed to reach the target station. 

Therefore, it can be deduced that there is causation 

between the historical entrance volume of certain 

toll stations and the exit volume of the target toll sta-

tion. 

However, this paper does not attempt to build a 

model that fits the micro traffic evolution process. 

The evolution of traffic is a highly complex stochas-

tic process. Micro-traffic simulation models such as 

the Car-following Model (Yang & Koutsopoulos, 

1996; Newell, 2002; X. Zhao & Gao, 2005; Xiao et 

al., 2020) and the Cell Transmission Model (Huang 

et al., 2008; Hu, Wang, & Lu, 2010; Hu, Wang, & 

Sheng, 2010; Ji et al., 2009; Xie et al., 2013) require 

large numbers of parameters and huge amounts of 

calculations to obtain results with acceptable accu-

racy, which is highly time-consuming and therefore 

impractical for real-time prediction tasks. 

Before introducing the model, the correlation mech-

anism analysis is presented below. The analysis and 

experiments were applied to the data collected by the 

highway toll collection system of Guangdong Prov-

ince. The system has recorded information including 

the license plate number, the entrance time or the 

exit time, the road ID and the station ID, of every 

entrance or exit event within the entire highway net-

work of Guangdong Province. Because of the tolling 

propose, the collected data is highly precise and re-

liable. The spatial distributions of all 565 highway 

toll stations of the highway system are shown in Fig-

ure 1. The stations are densely located in the Pearl 

River Delta Economic Zone, while sparsely located 

in the less-developed areas. The study area, marked 
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in red in Figure 1, covering many logistics ware-

houses and the city airport of the provincial capital, 

locates in the major transportation hub of the prov-

ince. The highway network in this area is among the 

densest in the province. 

 

2.1. Local spatial correlation 

Although the exit flow of the target station originates 

from the historical entrance flow of its upstream sta-

tions, only a small proportion of the historical en-

trance traffic will exit via the target station by ob-

serving the historical data. Figure 2 shows the en-

trance volume of the stations within a range of ap-

proximately 60 km from Zhongluotan station (ID: 

52-25), and the proportion of the entrance vehicles 

heading for Zhongluotan station, in September 2019. 

The maximum proportion shown is only 3%, which 

might be explained with the complex traffic connec-

tions between stations and the small buffer zone of 

each station. 

Figure 2 shows that the stations with the largest pro-

portions of their entrance volume heading for Zhon-

gluotan, marked by the circles with the darkest col-

our, are located north to the target station. However, 

the exit volumes contributed from these stations may 

still be not significant because the scales of their en-

trance volumes are among the smallest. Meanwhile, 

the exit volumes contributed by the stations within 

the area marked by red dashed line may be relatively 

large because: (1) the scales of their entrance vol-

umes are among the biggest; and (2) the proportions 

of the entrance vehicles heading for the target station 

are just slightly smaller than the biggest. 

From the demonstration above, it can be concluded 

that the local spatial correlation between the histori-

cal entrance volumes of nearby stations and the fu-

ture exit volume of the target station is influenced by 

both the scale of the entrance volume and the pro-

portion of the entrance vehicles heading for the tar-

get station. 

 

 
Fig. 1. Spatial distribution of all highway toll stations in Guangdong Province 
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Fig. 2. Demonstration of the factors that affect the local spatial correlation 

 

2.2. Time-varying characteristics of the local 

spatial correlation 

Because of the regularity of working and entertain-

ing behaviours, the traffic demand keeps changing 

throughout the day, resulting in the fluctuation of the 

exit volume. By plotting the hourly proportion of ve-

hicles that enter via Tuhua station to those that exit 

via Zhongluotan station over a 3-day period (Figure 

3), a conclusion can be drawn that the fluctuation 

pattern for each day is quite similar. The 3 days all 

exhibit steep crests at around 4 o’clock and 7 

o’clock, and a mild crest at around 13 o’clock. The 

proportion continues to gently decrease afterwards 

until around 23 o’clock, when a slight increase is ex-

hibited. The above results show that the contribution 

of the entrance station to the target station is time-

varying with a certain degree of periodicity. 

 

2.3. Local temporal correlation 

The travel time of a highway trip heavily depends on 

the distance between OD stations. Figure 4 shows 

the average travel time for trips with the target sta-

tion as the destination and stations within a certain 

range as origins. The majority of the cases shown 

follow the pattern that the longer the distance to the 

target station is, the longer the mean travel time. 

However, distance is not linearly associated with 

travel time. From a microscopic perspective, the 

travel time of a vehicle is affected by the traffic flow 

state of all the road sections that it has gone through. 

The traffic flow state of a road is related to many 

unobserved factors, including the weather, conges-

tion level, number of lanes, and so on. As the travel 

distance gets longer, these factors accumulate, caus-

ing the uncertainty of each travel to increase, enlarg-

ing the dispersion of the travel time distribution. 

Here, the dispersion level is measured by the stand-

ard deviation, which is shown in Figure 4 by the 

lightness of the colour. As shown in the figure, in 

general, the dispersion level increases as the en-

trance station gets farther away from the target sta-

tion. Then the travel time distribution of vehicles 

that enters during a certain time period can be con-

verted to the distribution of the arrival volume of the 

same fleet over time, which is illustrated by Figure 

5. 
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Fig. 3. Hourly proportions of vehicles that enter via Tuhua station to those that exit via Zhongluotan station 

(Sept. 9 to 11, 2019) 

 

 
Fig. 4. Means and standard deviations of the travel times of trips with the target station as the destination and 

the stations within a certain range as the origins 

 

Figure 6 presents a demonstration of how a station’s 

entrance volume in different periods contributes dif-

ferently to the target station’s exit volume in a spe-

cific period. Here, the entrance and exit station are 

the station S1 and ST in Figure 4, respectively. On 

the right side of the figure is the arrival volume dis-

tribution of the traffic that enters in various time pe-

riods. The distributions are the same here, while they 

may be slightly different in real practice due to 

changing traffic conditions. To calculate the exit 

volume of station ST in period T5 ∼ T6 is to sum up 

the areas where the yellow area overlaps each blue 



Huang, Z., Lin, P., Lin, X., Zhou, C., Huang. T., 

Archives of Transport, 61(1), 21-38, 2022 

27 

 

 

area. To calculate the contribution made by each pe-

riod’s entrance volume is to calculate the proportion 

of the overlapping area to the blue area. On the left 

side of the figure, the degree of the contribution that 

the entrance volume of S1 in different periods makes 

to the exit volume of ST in period T5 ∼ T6 is shown, 

the redder the circle means the bigger the contribu-

tion. 

 

2.4. Global spatial correlation 

The local spatial correlation based on the evolution 

of the traffic flow has been analysed in section 2.1. 

Meanwhile, another type of correlation may exist if 

the volume sequence is regarded as a whole feature, 

representing the recent evolutionary pattern. Here, 

the Pearson Correlation Coefficient is applied to 

evaluate the correlation between the hourly entrance 

and exit volume sequence on the selected day. As 

shown in Figure 7, almost all exit stations have 

 

 
Fig. 5. Distribution of the arrival volume over time 

(on the map, the star represents the target sta-

tion, and the square represents entrance sta-

tion, vehicles enter the highway from 𝑇−1 to 

𝑇0 and exit the highway via the target station 

𝑆𝑇 , the travel time distribution of the en-

trance volume is affected by factors like path 

distance and congestion level along the path) 

 
Fig. 6. Illustration that the entrance volumes in dif-

ferent historical time periods have different 

degrees of contribution to the exit volume 

 

some highly correlated entrance stations in terms of 

the similarity of the evolutionary patterns of their 

volume sequence. Therefore, sequential correlation 

can also be considered as an important metric for 

quantifying the spatial correlation. 

 

 
Fig. 7. Means and standard deviations of the travel 

times of trips with the target station as the 

destination and the stations within a certain 

range as the origins 
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2.5. External Features 

Traffic time sequence usually exhibits periodicity to 

some extent, the volume to be predicted in this paper 

is not an exception. Figure 8 plots the heatmap of the 

15-minute exit volume of Zhongluotan station in 

Sept. 2019. Each day shares a similar evolutionary 

pattern, and the crest is less intense on weekends 

than that on weekdays. Therefore, taking account of 

the periodicity may help to improve the performance 

of the model. Because the traffic volume to be pre-

dicted is an aggregate measurement resulting from 

social activities, it is less likely to experience intense 

fluctuations unless incidents such as infrastructure 

maintenance or traffic accidents occur. The ups and 

downs of the volume happen gradually most of the 

time. As is shown in Figure 8, the recent trend often 

continues to be exhibited in the following time steps; 

thus, adding the recent historical exit volume of the 

target station to the model is also a reasonable ap-

proach. 

 

 

3. Methodology 

3.1. Notation and problem statement 

Suppose 𝑁 stations are selected to provide their his-

torical entrance volumes. Given a time window of 

length 𝑇 , we use 𝐗 = (𝐱1, 𝐱2, . . . , 𝐱𝑁)⊤ =
(𝐱1 , 𝐱2, . . . , 𝐱𝑇) ∈ ℝ𝑁×𝑇  to denote the input series 

during the past 𝑇 time steps with a 15-min interval, 

where 𝐱𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 , . . . , 𝑥𝑇
𝑘) ∈ ℝ𝑇  is the entrance 

volume series of station 𝑘 , and 𝐱𝑡 =
(𝑥𝑡

1, 𝑥𝑡
2, . . . , 𝑥𝑡

𝑁) ∈ ℝ𝑁 is the entrance volume vector 

of all entrance stations at time 𝑡 . We use 𝐲 =

(𝑦1, 𝑦2, . . . , 𝑦𝑇) ∈ ℝ𝑇  to denote the historical exit 

volume series. Moreover, 𝛚 = 𝜔1, 𝜔2, . . . , 𝜔𝑇 ∈ ℝ𝑇 

represents the series of 24-hour timestamp, and 𝛙 =
𝜓1, 𝜓2, . . . , 𝜓𝑇 ∈ ℝ𝑇  represents the series of day of 

the week. The proposed model aims to learn a non-

linear mapping to the exit volume of the target sta-

tions in the upcoming time window of length 𝑈 , 

which we denote as �̂� = (�̂�1, �̂�2, . . . , �̂�𝑈) ∈ ℝ𝑈.  
 

3.2. Model 

The framework of the proposed model is shown in 

Figure 9. To output a fixed-length series at once, an 

encoder-decoder architecture is used. This architec-

ture was initially widely used in natural language 

processing studies and was recently proposed for 

multistep time series prediction by Qin et al. (2017) 

and Du et al. (2019). The spatial attention is embed-

ded in the encoder to convert the raw input into a 

vector in which the features from the highly corre-

lated stations are amplified. The output of the en-

coder will then be sent to the decoder, where tem-

poral attention is embedded to amplify the features 

from the highly correlated historical time period, 

forming what is called a context vector. Then, a con-

catenation of the context vector and the external fea-

tures are put into an LSTM network, whose final 

hidden state vector combined with the final context 

vector will then be linearly transferred to eventually 

obtain the predicted multi-timestep exit volume of 

the target station. 

 

 
Fig. 8. Heatmap of the 15 min. exit volumes of a station in Sept. 2019 
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Fig. 9. Structure of the proposed model 

 

The results from section 2.1 and 2.2 show that the 

local spatial correlation between 𝑥𝑘  and 𝑦 is com-

plex and changing over time with a certain degree of 

periodicity. To equip the model with the ability to 

find the highly related entrance station from a large 

number of input stations, we employ an attention 

mechanism in the encoder as follows: 

 

𝑝𝑡
𝑘 = 𝐯𝑝

⊤tanh (
𝐖𝑝[𝐡encoder,𝑡−1; 𝐬encoder,𝑡−1] +

𝐔𝑝[𝐱𝑘; 𝛚𝑡; 𝛙𝑡] + 𝐛𝑝

) (1) 

 

𝛂𝑡
𝑘 =

𝑒𝑥𝑝(𝑝𝑡
𝑘)

∑ 𝑒𝑥𝑝(𝑝𝑡
𝑖)𝑁

𝑖=1

 (2) 

 

Where [⋅;⋅] represents the concatenation operation. 

The time features are appended to cope with the 

time-varying characteristics mentioned in section 

2.2. 𝐯𝑝, 𝐛𝑝 ∈ ℝ𝑇 , 𝐖𝑝 ∈ ℝ𝑇×2𝑚 , and 𝐔𝑝 ∈ ℝ3𝑇×𝑇 

are the parameters to be learned, where m is the size 

of the encoder hidden state. 𝐡encoder, 𝑡−1  and 

𝐬encoder, 𝑡−1 are the hidden state and cell state of the 

LSTM network in the previous time step, respec-

tively. The tanh activation function is applied to en-

able nonlinear transformation. Vector 𝐩𝑡  with 𝑁 

scalars is then normalized with the Softmax func-

tion, getting the attention weight vector 𝛂𝑡 =
(𝛼𝑡

1 , 𝛼𝑡
2, . . . , 𝛼𝑡

𝑁). 

The global correlation between the series of station 

𝑘’s entrance volume and the target station’s exit vol-

ume is measured by the Pearson Correlation Coeffi-

cient (PCC) as follows: 

 

𝜌𝐱𝑘,𝐲 =
∑ (𝑇

𝑡=1 𝑥𝑡
𝑘−𝑥

𝑘
)(𝑦𝑡

𝑘−𝑦
𝑘

)

√∑ (𝑇
𝑡=1 𝑥𝑡

𝑘−𝑥
𝑘

)2 ∑ (𝑇
𝑡=1 𝑦𝑡

𝑘−𝑦
𝑘

)2

   (3) 

 

Here, PCC can map the linear correlation of two se-

ries to the range of [−1,1], where −1 indicates a to-

tally negative linear correlation, and 1 indicates a to-

tally positive linear correlation. 

Both the local and global spatial correlation can af-

fect the exit volume; thus, to jointly consider both of 

them, a confusion procedure is applied to calculate 

the spatial attention score: 

 

𝛔𝑡 = 𝐖𝜎[𝛂𝑡; 𝛒] + 𝐛𝜎  (4) 

 

Where 𝛒 = (𝜌𝐱1,𝐲, 𝜌𝐱2,𝐲, . . . , 𝜌𝐱𝑁,𝐲)⊤ , 𝛂𝑡 =

(𝛼𝑡
1 , 𝛼𝑡

2, . . . , 𝛼𝑡
𝑁)⊤ . 𝐖𝜎 ∈ ℝ𝑁×2𝑁  and 𝐛𝜎 ∈ ℝ𝑁  are 

the parameters to be learned. Then the raw input fea-

tures of time 𝑡 are adjusted by being multiplied by 

its corresponding spatial attention score, which is 

shown as follows: 

 

�̃�𝑡 = (𝜎𝑡
1𝑥𝑡

1, 𝜎𝑡
2𝑥𝑡

2, . . . , 𝜎𝑡
𝑁𝑥𝑡

𝑁)⊤ (5) 
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Where the features from the strongly correlated en-

trance stations are amplified, while features from the 

weakly correlated ones are attenuated. Then, the 

spatially adjusted input features �̃� =
(�̃�1, �̃�2, . . . , �̃�𝑡) are fed directly into LSTM cell as 

follows: 

 
𝐡encoder,𝑡 = 𝑓𝑒(𝐡encoder,𝑡−1, �̃�𝑡−1) (6) 

 

Where 𝑓𝑒  is the LSTM cell function for the encoder, 

and 𝐡encoder,𝑡  is the hidden state of time 𝑡. By concat-

enating all the hidden state vectors, we obtain 

𝐇encoder = (𝐡encoder,1, 𝐡encoder,2, . . . , 𝐡encoder,𝑇) ∈

ℝ𝑇×𝑚, which will be the input vectors for the de-

coder. 

To learn the local temporal correlation analysed in 

section 2.3., we employ an attention mechanism for 

the time dimension in the decoder so that features 

from highly correlated historical periods can be 

given higher attention weights, therefore contrib-

uting more to the output �̂�. Specifically, the attention 

weight for each decoder hidden state at time 𝑡′  is 

computed by the following: 

 

𝑞𝑡′
𝑡 = 𝐯𝑞

⊤tanh(𝐖𝑞
′ [𝐡decoder,𝑡′−1; 𝐬decoder,𝑡′−1] +

𝐖𝑞𝐇encoder,𝑡 + 𝐛𝑞) (7) 

 

𝛽𝑡′
𝑡 =

𝑒𝑥𝑝(𝑞
𝑡′
𝑡 )

∑ 𝑒𝑥𝑝(𝑞
𝑡′
𝑗

)𝑇
𝑗=1

 (8) 

 

Where 𝛽𝑡′
𝑡  is the temporal attention score at time 𝑡′ 

for encoder hidden state 𝑡 . 𝐯𝑞 , 𝐛𝑞 ∈ ℝ𝑚 , 𝐖𝑞
′ ∈

ℝ𝑚×𝑚, and 𝐖𝑞 ∈ ℝ𝑚×2𝑛  are learnable parameters; 

𝑛 is the size of the decoder hidden state; 𝐡decoder,𝑡′−1 

and 𝐬decoder,𝑡′−1 are the hidden state and cell state of 

the LSTM network in the previous time step, respec-

tively. 

The method used to generate temporal attention 

weight is similar to that for generating the spatial at-

tention weight, as explained above. Then, each tem-

poral weight is assigned to the corresponding en-

coder hidden state to calculate the weighted summed 

vector: 

 

𝐜𝑡′ = ∑ 𝛽𝑡′
𝑡 𝐡encoder,𝑡

𝑇
𝑡=1  (9) 

 

Where 𝐜𝑡′ is what we call the context vector at time 

𝑡′ of the decoder, which allows the learned features 

from stations or time with high correlations to more 

substantial contributions. 

As analysed in section 2.4., time features and the re-

cent historical exit volume of the target station may 

also be correlated with the output series based on the 

periodicity characteristics and the continuity of the 

recent trend. Here, we concatenate these features 

with the context vector as follows: 

 

�̃�𝑡′ = �̃�⊤[𝐲𝑡′ , 𝛚𝑡′ , 𝛙𝑡′ , 𝐜𝑡′] + �̃�  (10) 

 

Where �̃� ∈ ℝ𝑈×(𝑚+3)  and �̃� ∈ ℝ𝑈  are the parame-

ters to be learned. 

Then, the decoder hidden state of the current time 𝑡′ 

can be updated as follows: 

 
𝐡decoder,𝑡′ = 𝑓𝑑(𝐡decoder,𝑡′−1, �̃�𝑡′−1) (11) 

 

Where 𝑓𝑑 is an LSTM cell function for the decoder, 

and 𝐡decoder,𝑡′  is the hidden state of time 𝑡′. 

Considering that the context vector is a key interme-

diate vector that has been modified through optimi-

zation iterations to reveal the features that have been 

determined to be strongly correlated with the target 

series, which indicates that it may already be linearly 

related to �̂�. Therefore, in the last layer of the model, 

we include not only the hidden state of the decoder 

but also the context vector to generate the prediction 

output as follows: 

 

 �̂�𝑡′ = 𝐯𝑦
⊤(𝐖𝑚[𝐜𝑡′; 𝐡decoder,𝑡′] + 𝐛𝑚) + 𝑏𝑦  (12) 

 

Where �̂�𝑡′ is the predicted exit volume of the target 

station for time 𝑡′ . 𝐖𝑚 ∈ ℝ𝑛×(𝑚+𝑛) , 𝐛𝑚 ∈ ℝ𝑛 , 

𝐯𝑦 ∈ ℝ𝑈×𝑛 , and 𝑏𝑦 ∈ ℝ𝑈  are the parameters to be 

learned. The final output is generated through this 

linear transformation. 

Since the distance between the real series and the 

predicted series is to be narrowed through optimiza-

tion iterations, the loss function we use to define the 

objective of learning is the mean squared error 

(MSE): 

 

𝐿(𝛉) = ‖�̂� − 𝐲‖2
2  (13)  

 

Where 𝛉 represents the set of learnable parameters 

in the model, and 𝐲 is the vector for the real exit vol-

ume. 
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4. Experiments 

4.1. Datasets 

The proposed model was applied to the data col-

lected by the highway toll collection system of 

Guangdong Province as a numerical example. De-

tailed description of the dataset has been presented 

in Section 2. We choose 15 minutes as the time in-

terval considering that larger intervals, such as 30 

minutes, have been greatly smoothened and would 

be too easy to predict, while smaller intervals, such 

as 5 minutes, would fluctuate too much to acquire 

precise predictions. The time range of the training 

set and test set are shown in Table 1. 

 

Table 1. The time range of the datasets 

Data set From time To time Num. of 

data points 

training set 
2019.6.1 

00:00:00 

2019.8.31 

24:00:00 
8832 

test set 
2019.9.1 

0:00:00 

2019.9.20 

24:00:00 
1920 

 

Z.-W. Wang (2019) in 2019 shows that 80% of trips 

take less than 50 minutes on the highway network of 

Guangdong, which means that in most cases, most 

exit flow of a station in the next 15 minutes comes 

from vehicles that have entered during the last 4 pe-

riods. However, the travel time will be lengthened 

during peak periods such as rush hours and toll-free 

times, when an accurate prediction is more required. 

Moreover, increasing the length of input series can 

help better represent the recent evolutionary patterns 

when calculating the global spatial attention. There-

fore, we choose 8 to be the length of the entrance 

volume series input, which covers the time window 

of the last 2 hours. 

In this experiment, the Zhongluotan station (ID:52-

25) is chosen as the target station. Through pre-anal-

ysis, we found that the scale of the exit volume of 

this station is at a medium to high level, and the 

sources of the exit volume are relatively evenly dis-

tributed, making it more difficult for the model to 

find the most correlated entrance stations. The all 

112 stations within a travel distance of 60 km from 

the target station are selected to provide the recent 

entrance volume input. For a given target station, the 

entrance stations that have impact on its exit volume 

are selected based on travel demand analysis ob-

tained from both historical data and prior knowledge 

of inter-regional transport connections. In this exam-

ple, the range is chosen for the following reasons: 

(1) the average highway travel distance in the core 

area of the Pearl River Delta is about 45km based on 

historical data; and (2) considering the close eco-

nomic relationship and strongly connected highway 

network between Guangzhou and its adjacent cities, 

we expand the range to 60km to cover not only the 

urban and suburban areas of Guangzhou but also a 

part of Foshan and Dongguan city. 

 

4.2. Spatial attention validation 

The evolution of the spatial attention weights during 

the first 1000 epochs is shown in Figure 10. Due to 

space limitations, the stations with the weight less 

than 5e-4 are omitted. The apparent differentiation 

of the attention weights occurred at about the 50th 

epoch. From then on, only a few stations were as-

signed high scores, and others were assigned such 

low scores that their contributions could be ignored. 

The weights kept slightly adjusting afterwards. 

 

 
Fig. 10. Evolution of the spatial attention weights during the first 1000 epochs 
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The spatial attention weights converged at around 

the 2500th epoch. The training result of the spatial 

attention weights of all entrance stations are plotted 

on a map as shown in Figure 11, where the larger the 

blue “X” mark is the bigger the weight. The target 

station is marked by a yellow “X”, whose size has 

no meaning. 

From Figure 10, we can see that many highly 

weighted stations are on the road 30, while the most 

heavily weighted station is 42-1. We find that these 

stations are all located within the area marked by the 

red dashed line, which highly overlaps the area we 

marked in Figure 2 as the potentially biggest con-

tributing area regarding both the scale and the pro-

portion. This consistency proves that the trained re-

sult of the spatial attention is highly explainable, and 

the proposed mechanism can determine the highly 

correlated stations from many candidates. 

 

4.3. Temporal attention validation 

The evolution of the average temporal attention 

weight over the epochs is shown in Figure 12 and 

Figure 13 with a heatmap and a line chart, respec-

tively. Unlike the evolution of the spatial attention 

weight, which showed a clear tendency towards sev-

eral stations early in the training, the differentiation 

of the temporal attention weight happened slowly, 

and the convergence remained unnoticeable until 

around the 2000th epoch. At the end of the training, 

the temporal attention weight increased as the his-

torical time step got closer to the current time, which  

 

 
Fig. 11. Training result of the spatial attention weights
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might be explained as follows: (1) the historical en-

trance traffic of the most recent time step were most 

likely to arrive completely within the forecast period 

while the entrance traffic of earlier periods from 

some very close stations had already arrived before 

the prediction started; (2) the travel time distribu-

tions for short-range trips were less dispersed, mak-

ing it easier to fit a model; and (3) the recent evolu-

tionary trend of the traffic was more likely to con-

tinue in the future. 

 

 
Fig. 12. Heatmap of the evolutionary process of the 

average temporal attention weight 

 

 
Fig. 13. Line chart for evolving process of average 

temporal attention weight 

 

 

4.4. Model comparison 

To test the effectiveness of each model component, 

we compare the proposed model with the following 

baselines: 

(1) AR-LSTM: Only the historical exit vol-

ume feature is used as an input to perform an 

auto regression with an LSTM network. 

(2) ED-LSTM: The historical entrance vol-

ume feature is included with the input features, 

and an LSTMembedded Encoder-Decoder with-

out attention mechanism is applied. 

(3) ED-Spatial: The spatial attention mecha-

nism is added on the basis of ED-LSTM. 

(4) ED-Temporal: The temporal attention 

mechanism is added on the basis of ED-LSTM. 

(5) ST-GCN(Cui et al., 2020): A spatial-tem-

poral graph convolution model based on the spa-

tial method. In the computation of the weighted 

adjacency matrix, we set σ and ε to 10 and 0.4, 

respectively. Since we do not have road distance 

data between stations, we simply set d as the 

straight-line distance. 

(6) ST-ResNet(J. Zhang et al., 2018): The 

model is widely used in grid-based flow predic-

tion. It learns the spatio-temporal correlations by 

residual unit. Since our dataset is node-based, 

we simply reshaped the entrance series of each 

timestep into a 11 × 11 matrix and fill the last 9 

values with 0, then fed the matrix into both the 

inflow and outflow features. We set 𝑝, 𝑞, 𝑙𝑐, 𝑙𝑝, 

𝑙𝑞 to 2, 4, 4, 4, 4, respectively. 

To measure the prediction accuracy, we consider 3 

evaluation metrics, the mean squared error (MSE), 

the mean absolute error (MAE) and the mean abso-

lute percentage error (MAPE). The definitions of 

them are: 

 

MSE =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1  (14) 

 

MAE =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1  (15) 

 

MAPE =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑛

𝑖=1  (16) 

 

Where �̂�𝑖  is the predicted value at time 𝑖 and 𝑦𝑖  is 

the real value at time 𝑖. The test results of various 

models are listed in Table 2. 

In terms of the overall 2-hour performance, the ac-

curacy of AR-LSTM is significantly lower than that 
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of the other models. The MSE of ED-LSTM is less 

than that of AR-LSTM by 22%, indicating that the 

historical entrance volume can provide valuable in-

formation for predictions. The single additions of 

spatial attention (ED-Spatial) and temporal attention 

(ED-Temporal) can help reduce the MSE by 9.55% 

and 23.86%, respectively, for the EDLSTM. This re-

sult demonstrates that by focusing on either the 

highly correlated spatial or temporal features, the 

performance can be improved. And temporal atten-

tion seems to be more effective. Lastly, the proposed 

model outperforms all the other models, with a 

53.85% and 29.51% lower MSE, a 20.04% and 

13.93% lower MAE, and a 14.55% and 5.75% lower 

MAPE compared with the ED-Spatial and ED-Tem-

poral models, respectively, indicating that the com-

bination of the two levels of attention can help learn 

the complex correlation mechanism between the in-

put and output more thoroughly. Lastly, the pro-

posed model is also superior to the 2 state-of-the-art 

models, ST-GCN and ST-ResNet, in terms of all the 

metrics. 

Such improvement in prediction accuracy can help 

the demand-responsive traffic control approaches to 

react to the upcoming traffic volume more precisely 

and effectively. Take adaptive traffic light control as 

an example, a slight difference of the predicted vol-

ume of the incoming lanes will result in a difference 

of seconds that a traffic light phase will be assigned 

to. 

It can be seen in Table 2 that all metrics at each time 

step are generally consistent with the overall results 

described above in terms of their mutual relation-

ship. To further investigate the performance differ-

ences at each time step, we visualize the stepwise 

MSE of each model in Figure 14. Initially, we expect 

to see the MSE to increase over time for all models, 

but this only exhibits in the case of AR-LSTM, while 

the curves of the other models are unexpectedly flat, 

indicating that the error differences between time 

steps are small. We interpret this as follows: (1) Cau-

sality-based mapping can overcome the problem of 

lacking information to capture in the long-term for 

traditional multi-timestep prediction models; (2) 

The input features from the selected entrance sta-

tions and periods can deliver long-term impacts on 

the exit traffic over the next 2 hours. 

In conclusion, the proposed model can learn the 

complicated and dynamic traffic correlation more 

precisely and effectively, with a more explainable 

internal mechanism. And it can achieve a more ac-

curate predicted result of the exit volume in the long 

term. 

Finally, we compare the computation time for dif-

ferent models to test their ability for real-time pre-

diction. Table 3 gives the average computation time 

of 1000 predictions for various models. The compu-

tation time increases as the model gets more com-

plex in structure. For the proposed model, which re-

quires the most computation power, the predicted 

exit volume of the upcoming 2 hours can be com-

puted in around 140ms, which is fast enough for 

even extremely real-time prediction tasks. 

 

 
Fig. 14. Stepwise MSE errors of various models 
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Table 2. The time range of the datasets 

Error 
Period 

(min.) 
ST-GCN 

ST-Res-

Net 

AR-

LSTM 

ED- 

LSTM 

ED- 

Spatial 

ED- 

Temporal 
Proposed 

MSE 

0-120 
0-15 

15-30 

30-45 
45-60 

22.3 
21.223 

21.784 

21.959 
22.157 

17.923 
18.375 

17.624 

17.524 
17.36 

30.596 
27.892 

26.206 

27.293 
28.802 

23.797 
25.136 

25.411 

23.749 
24.456 

21.525 
22.11 

19.881 

19.527 
20.935 

18.12 
28.341 

18.404 

15.158 
14.827 

13.991 
16.726 

12.946 

13.019 
11.924 

 60-75 22.333 17.609 29.152 22.727 20.234 14.084 12.128 

 75-90 22.66 17.793 30.895 24.176 21.568 14.469 12.903 

 90-105 22.962 18.117 32.151 21.648 23.166 15.093 14.268 

 105-120 23.321 18.985 42.374 23.073 24.782 24.583 18.014 

MAE 

0-120 

0-15 
15-30 

30-45 

45-60 

3.459 

3.393 
3.428 

3.436 

3.446 

3.112 

3.142 
3.077 

3.081 

3.062 

3.755 

3.579 
3.516 

3.568 

3.664 

3.738 

3.773 
3.856 

3.758 

3.795 

3.563 

3.619 
3.415 

3.397 

3.535 

3.31 

3.96 
3.189 

2.989 

3.016 

2.849 

3.113 
2.744 

2.718 

2.628 

 60-75 3.463 3.096 3.606 3.679 3.453 3.073 2.677 

 75-90 3.484 3.113 3.83 3.78 3.543 3.141 2.751 

 90-105 3.498 3.131 3.885 3.603 3.71 3.141 2.906 

 105-120 3.526 3.193 4.396 3.658 3.829 3.975 3.254 

MAPE 

0-120 

0-15 

15-30 
30-45 

45-60 

6.33% 

6.06% 

6.46% 
6.56% 

6.38% 

5.59% 

5.36% 

5.63% 
5.78% 

5.60% 

7.85% 

8.15% 

7.96% 
7.78% 

7.78% 

6.43% 

6.29% 

6.39% 
6.58% 

6.54% 

6.40% 

6.42% 

6.30% 
6.21% 

6.55% 

5.80% 

6.20% 

5.96% 
5.76% 

5.29% 

5.47% 

5.75% 

5.42% 
5.50% 

5.28% 

 60-75 6.44% 5.66% 7.66% 6.40% 6.40% 5.42% 5.28% 

 75-90 6.26% 5.55% 7.65% 6.51% 6.35% 5.35% 5.31% 

 90-105 6.34% 5.59% 7.72% 6.25% 6.40% 5.74% 5.43% 

 105-120 6.18% 5.55% 8.09% 6.52% 6.56% 6.69% 5.78% 

 

Table 3. Computation time of various models 

 
AR LSTM ED LSTM ED Spatial ED Temporal Proposed 

average 
computation time (ms) 97.05 98.44 121.57 115.07 142.74 

 

5. Conclusions 

In this paper, we propose a novel spatiotemporal at-

tention mechanism-based deep learning model for 

forecasting the short-term multistep exit volume of 

highway toll stations. In the first level, the local and 

global spatial attention mechanisms considering the 

micro traffic evolution and macro pattern similarity, 

respectively, are applied to capture and amplify the 

features from the highly correlated entrance stations. 

In the second level, a temporal attention mechanism 

is employed to amplify the features from the time 

steps captured as being more influential to the future 

exit volume. Moreover, with a fusion module, the 

model considers the effects of the external features, 

including the timestamp and historical exit volume 

series of the target station. We extract and visualize 

the learnt spatial and temporal attention scores, and 

found that both can be reasonably explained by char-

acteristics acquired from historical data. We evalu-
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ate our model on a dataset from the highway toll col-

lection system of Guangdong Province, China. The 

experiment results show that our model outperforms 

all the other models in terms of the overall and step-

wise metrics (MSE, MAE, and MAPE), and prove 

that all the proposed components are effective for 

improving prediction accuracy. Moreover, we test 

the computation time and prove that the proposed 

model is fast enough for real-time prediction. 
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