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Abstract: 

In the urban transportation network, most passengers choose public transportation to travel. However, bad weather, acci-

dents, traffic jams and other factors lead to uncertainty in transportation network. Besides, transport vehicles running on 
the same segments of routes and belonging to different modes or routes make the transportation network more complicated. 

In order to improve the efficiency of passenger’s travel, this paper aim to introducing an approach for optimizing passenger 

travel routes. This approach takes the travel cost and the number of transfers as constraints to finding the shortest total 
travel duration of passenger in urban transportation network. The running duration and dwell duration of the vehicles in 

the network are uncertain, and the vehicles are running according to the timetables. As transportation modes, bus, rail 

transit and walk are considered. In terms of methodological contribution, this paper combines Genetic Algorithm (GA) and 
Monte Carlo simulation to deal with optimization problem under stochastic conditions. This paper uses Monte Carlo sim-

ulation to simulate the running duration and dwell time of vehicles in different scenarios to deal with the uncertainty of the 

network.  The shortest path of passenger’s travel is solved by GA. Two kinds of population management strategies including 
single population management strategy and multiple population management strategy are designed to guide the solution 

population evolving process.  The two kinds of population management strategies of GA are tested in numerical example. 

The satisfactory convergence performance and efficiency of the model and algorithm is verified by the numerical example. 
The numerical example also demonstrated that the multiple population management strategy of GA can get better results 

in a shorter CPU time. At the same time, the influences of some significant variables on solution are performed. This paper 

is able to provide a scientific quantitative support to the path scheme selection under the influence of common-lines and 
timetables of different modes of transportation in stochastic urban multimodal transportation network. 
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Monte Carlo simulation 

To cite this article: 

Peng, Y., Mo, Z., Liu, S., 2021. Passenger’s routes planning in stochastic common-

lines’ multi-modal transportation network through integrating Genetic Algorithm and 

Monte Carlo simulation. Archives of Transport, 59(3), 73-92. DOI: 

https://doi.org/10.5604/01.3001.0015.0123 
 

 

Contact: 

1) pyepeng@163.com [https://orcid.org/0000-0002-2253-3524] – corresponding author;  

2) 867801038@qq.com [https://orcid.org/0000-0001-6998-8174]; 3) [https://orcid.org/0000-0001-9589-0496] 

 

https://doi.org/10.5604/01.3001.0015.0123
mailto:pyepeng@163.com
https://orcid.org/0000-0002-2253-3524
mailto:867801038@qq.com
https://orcid.org/0000-0001-6998-8174
https://orcid.org/0000-0001-9589-0496


74 

 

Peng, Y., Mo, Z., Liu, S., 

Archives of Transport, 59(3), 73-92, 2021 

 

 

1. Introduction 

Nowadays, passenger travel within urban transpor-

tation network always need to consider planning of 

travel path. In the works of passenger travel path op-

timization, some literatures only considered one 

mode of transportation(Jin et al., 2017; Xiao & He, 

2017; Zhu et al., 2019). However, multimodal trans-

portation has become a necessary choice for passen-

ger, it is difficult for passenger to find a suitable path 

in complicated routes (Abbaspour & 

Samadzadegan, 2010). Therefore, it is worth study-

ing that passenger’s routes planning under multiple 

modes of transportation. 

Multiple lines share several segments of routes can 

be regarded as common-lines. This situation should 

be considered in the optimization of passenger travel 

path, because it increases the complexity of route se-

lection. The common-lines problem was put forward 

by  (Chriqui & Robillard, 1975) firstly. In his model, 

passenger selects a set of routes (called attractive 

lines) at origin node and board next vehicle to travel. 

(Nguyen et al., 1998) used a particular graph struc-

ture called hyperpaths, which uses different edges 

between nodes to represent different lines. Their 

model allows that passenger to choose attractive 

lines at every stop and also assume that passenger 

will take first arriving vehicle. In above studies, 

choice of route only is related to passenger waiting 

duration. In later work, (Nassir et al., 2019) took 

other factors into account when measuring the at-

traction of lines. Passenger waiting duration should 

not be the only factor when passenger choose routes. 

It may lead to more the number of transfers because 

the distances that lines carry passenger toward their 

destination is different. The number of common-

lines' modes of transportation is a significant factor 

to be taken into account. (Artigues et al., 2013; Kang 

& Youm, 2017) searched an optimal travel path in 

multimodal networks where different lines of one 

mode of transportation are common-lines. Neverthe-

less, in multimodal urban networks, passenger face 

that lines from different modes of transportation are 

common-lines. (Liu et al., 2017) studied the multi-

modal shortest path problem under this condition. 

In the all above cited literatures, the passenger travel 

path was studied under a deterministic environment. 

However, for passenger taking multi-modal trans-

portation, one of significant sources of uncertainty is 

time, which cannot be estimated exactly (Ghavami, 

2019). A few researchers pay attention to how to 

simulate total travel duration, especially waiting du-

ration. (Pi et al., 2019) believed that it is reasonable 

to simplify the waiting duration of passengers in 

high-frequency traffic mode to a constant. (Omar 

Dib et al., 2018; Goerigk & Schmidt, 2017) also ap-

plied the waiting duration as a constant in their pa-

pers. However, (Cheng et al., 2019) adopted histori-

cal data to calculate the distribution of waiting dura-

tion. Moreover, to calculate the waiting duration 

more realistic, some researchers obtained waiting 

duration based on the arrival time of the passenger 

and the transfer line (Botea et al., 2019; López & 

Lozano, 2019; T. Zhang et al., 2018; Y. Zhang & 

Tang, 2018).  

Suitable travel duration and travel cost are the fac-

tors that passenger pay attention to in their travels. 

In algorithm, the method of calculation of travel cost 

will influence on the choice of passenger travel path. 

One method for calculating travel cost is that multi-

plied the unit cost of different transportation modes 

by the travel distance (Dotoli et al., 2017; Faroqi & 

Mesgari, 2016; Narayan et al., 2020). And (Niksirat 

et al., 2012) calculated the travel cost of passenger 

by directly giving every cost of the edges. Sectional 

fare is commonly in rail traffic system, however, in 

above literatures, there is little information about 

sectional fare. Timetable provides public transport 

vehicles’ visiting stops along a certain route at a spe-

cific time of a day. The importance of timetable has 

prompted some researchers to consider this factor in 

the optimization of passenger travel path (Dalkiliç et 

al., 2017; O. Dib et al., 2017). 

As can be seen from our literature review, there are 

some more realistic aspects that have not been taken 

into account in previous studies and can be ex-

pressed as follows: (1) The distance that different 

transfer lines are able to carry passenger toward their 

destination have not been taken into account when 

passenger chose transfer line. (2) The factors that 

different transportation modes are common-lines 

and stochastic network have not been considered to-

gether in previous studies. (3) The sectional fare and 

timetable should be incorporated into solution pro-

cedure of passenger travel planning that different 

transportation modes are common-lines. Therefore, 

this paper study the travel path planning for passen-

ger in stochastic urban transportation network where 

different modes of transportation on the same road 

have different timetables, and the selection strategy 

of vehicle transfer is given. GA is applied to solve 
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the shortest transportation travel path with taking 

travel duration, dwell duration and transfer duration 

into account. Monte Carlo simulation is used to sim-

ulate different travel cases in step of calculating the 

fitness value of individual. The rest of this paper is 

organized as follows: Section 2 describes the pas-

senger’s routes planning problem in multimodal net-

works and a mathematic model is formulated. Sec-

tion 3 introduces the process of GA and Monte Carlo 

simulation to solve the path optimization problem. 

Section 4 provides an example along with the com-

putational results and numerical analysis. Finally, 

Section 5 presents the conclusions and future work. 

 

2. Problem description 

The problem is to optimize the planning of passen-

ger travel in a stochastic multimodal transportation 

network (including the modes of Bus, Rail transit 

and Walk) with common-lines’ different transport 

modes. Due to the factors such as weather, traffic 

conditions and the number of passengers boarding 

and alighting, the travel duration and dwell duration 

of vehicle are uncertain. Therefore, the challenge 

concerns dealing with the uncertainty of travel and 

dwell durations in order to enable the computation 

of the shortest path. This paper uses Monte Carlo 

simulation to simulate different scenarios to solve 

the uncertainty (the detailed description can be 

found in section 3.7). 

This paper finds the shortest path from the perspec-

tive of minimizing passenger’s total travel duration, 

and the constraints include travel cost and the num-

ber of transfers. The model formulation is developed 

under the following assumptions: 

− Capacity of transit vehicles meets transfer needs 

of passenger. 

− The number of intermediate nodes of different rail 

transit lines between the same transfer nodes is the 

same. 

− Passenger chooses the first arrival vehicle which 

can transport them to a station closer to destina-

tion. 

− The travel duration between transfer nodes and the 

dwell duration of transfer nodes obey a certain dis-

tribution. 

− The earliest departure time from originating stop 

and the departure headways of every lines are 

known. 

− The bus fare remains unchanged on the whole 

journey, and the charging rule of rail transit is the 

sectional fare which is defined as charging based 

on the number of stations passed by a passenger in 

travel. 

 

2.1. Notation and definitions 

Before this paper models this problem, notations 

which will be used to model the problem are as fol-

lows. It should be noted that stochastic parameters 

are represented by the ∼ symbol above them. 

 

2.1.1. Index set 

𝑁1  Set of transfer nodes where passenger can trans-

fer  

𝑁2  Set of intermediate nodes (between transfer 

nodes) where passenger not transfer at here 

𝑁  Set of network nodes including transfer nodes 

and intermediate nodes, (𝑁 = 𝑁1 ∪ 𝑁2) 

𝐸  Set of edges 

𝑉  Set of transportation modes: {B(bus), R(rail), 

W(walk)} 

𝐿  Set of transport lines: {(rail line) 𝐿𝑅 , (bus 

line)  𝐿𝐵 }, and different lines running are re-

stricted by timetables 

 

2.1.2. Parameters 

𝑂  the origin node of travel 

𝐷  the destination node of travel 

𝑣𝑖,𝑗  modes of transport from nodes 𝑖 to 𝑗, 𝑖, 𝑗 ∈

𝑁1  

𝑡𝑖,𝑗
�̃�   travel duration (including the dwell dura-

tion of the intermediate nodes between 

transfer nodes) of lines 𝑎  from node 𝑖  to 

node 𝑗, 𝑖, 𝑗 ∈ 𝑁1, 𝑎 ∈ 𝐿 

𝑡𝑖
�̃�  dwell duration of vehicle when passenger 

takes line 𝑎 and does not transfer at node 𝑖, 
𝑖 ∈ 𝑁1, 𝑎 ∈ 𝐿 

𝑡𝑖
𝑎,𝑏

  transfer duration (including three parts: 𝜉𝑖
1, 

𝜉𝑖
2 and 𝜉𝑖

3) spent by passenger transferring 

from the lines 𝑎  to 𝑏  at node 𝑖 , 𝑖, ∈
𝑁1, 𝑎, 𝑏 ∈ 𝐿 

𝜉𝑖
1  alighting duration after passenger arrives at 

node 𝑖, 𝑖, ∈ 𝑁1 

𝜉𝑖
2  possible walking duration of passengers 

transferring between different transport 

modes at node 𝑖, 𝑖 ∈ 𝑁1 

𝜉𝑖
3  waiting duration (ignores the boarding du-

ration of transfer) when passenger transfers 

at node 𝑖, 𝑖 ∈ 𝑁1 

𝑇𝑖
𝑎  arrival time when a passenger takes the 
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lines 𝑎 to arrive nodes 𝑖, 𝑖, ∈ 𝑁1, 𝑎 ∈ 𝐿 

𝑇𝑂
𝑎 leave time when a passenger takes the lines 

𝑎 to leave node 𝑂 

𝛾𝑖
ℎ  arrival time when transfer line ℎ arrives at 

node 𝑖, 𝑖, ∈ 𝑁1, ℎ ∈ 𝐿 

𝜃𝑖,𝑗  the number of stops passed by passenger 

from nodes 𝑖 to 𝑗, 𝑖, 𝑗 ∈ 𝑁1 

𝐶𝑎(𝜃𝑖,𝑗)  the cost of rail line from nodes 𝑖 to 𝑗, 𝑖, 𝑗 ∈

𝑁1, 𝑎 ∈ 𝐿𝑅, it can easy gain from sectional 

charging rule of rail traffic 

𝜔  the number of different bus line taken by 

passenger in whole travel 

𝐶𝑏  the fare for passenger to take one bus line  

𝐶𝑚𝑎𝑥  maximum allowable travel cost acceptable 

by passenger 

𝛽𝑚𝑎𝑥   maximum number of transfers acceptable 

by passenger

 

2.1.3. Decision variables 

 

𝑥𝑖,𝑗
𝑎 = {

1, if passenger selects line 𝑎 from nodes 𝑖 to 𝑗(𝑖, 𝑗 ∈ 𝑁1, 𝑎 ∈ 𝐿)

0,                  𝑒𝑙𝑠𝑒                             
 

𝑦𝑖
𝑎,𝑏 = {

1, if 𝑥𝑞,𝑖
𝑎 = 1 and 𝑥𝑖,𝑗

𝑏 = 1 (𝑞, 𝑖, 𝑗 ∈ 𝑁1  , 𝑖  ≠ 𝑆 𝑜𝑟 𝐷, 𝑎 ≠ 𝑏, 𝑎, b ∈ 𝐿)

0,                  𝑒𝑙𝑠𝑒                             
 

 

2.2. Formulation 

The objective function in this study is minimizing 

the passenger’s total travel duration with the number 

of transfers and the total travel cost acceptable by 

passenger. It can be formed as follows:
 

                                         𝑚𝑖𝑛𝑧 = ∑ ∑ ((𝑡𝑖,𝑗
�̃� + 𝑡𝑖

𝑎,𝑏

𝑎,𝑏∈𝐿

∗ 𝑦𝑖
𝑎,𝑏 + 𝑡𝑖

�̃� ∗ (1 − 𝑦𝑖
𝑎,𝑏)) ∗ 𝑥𝑖,𝑗

𝑎

𝑖,𝑗∈𝑁1

)                               (1) 

 

The constraints of this problem are given as follows: 

                                                                    𝐶𝑏 ∗ 𝑤 + ∑ 𝐶𝑎(𝜃𝑖,𝑗) ≤ 𝐶𝑚𝑎𝑥

𝑖,𝑗∈𝑁1

                                                             (2) 

                                                                           ∑ ∑ 𝑦𝑖
𝑎,𝑏 ≤

𝑎,𝑏∈L𝑖∈𝑁1

𝛽𝑚𝑎𝑥                                                                          (3) 

                                                                          ∑ ∑ 𝑥𝑂,𝑗
𝑎 = 1

𝑎∈L

, j ≠ O

𝑗∈𝑁1

                                                                      (4) 

                                                     ∑ ∑ 𝑥𝑖,𝑧
𝑎 − ∑ ∑ 𝑥𝑧,𝑗

𝑎 = 0, z

𝑎∈L𝑗∈𝑁1𝑎∈L𝑖∈𝑁1

∈ 𝑁1/{𝑂, 𝐷}, 𝑖 ≠ 𝑗                                        (5) 

                                                                                 ∑ ∑ 𝑥𝑖,𝐷
𝑎 = 1

𝑎∈L𝑖∈𝑁1

                                                                            (6) 

                                                                               ∑ 𝑥𝑖,𝑗
𝑎

𝑎∈L

≤ 1,   𝑖, 𝑗 ∈ 𝑁1                                                                     (7) 

                                                                               ∑ 𝑦𝑖
𝑎,𝑏 ≤

𝑎,𝑏∈L

1, 𝑖 ∈ 𝑁1                                                                       (8) 

                                        (𝑇𝑖
𝑎 + 𝜉𝑖

1 + 𝜉𝑖
2)𝑦𝑖

𝑎,ℎ ≤ 𝛾𝑖
ℎ𝑦𝑖

𝑎,ℎ, 𝑖 ∈ 𝑁1𝑎𝑛𝑑 𝑖 ≠ 𝐷, 𝑎, ℎ ∈ L                                       (9) 

                  𝑇𝑗
𝑎𝑥𝑖,𝑗

𝑎 (1 − 𝑦𝑖
𝑎,𝑏) = (𝑇𝑖

𝑎 + 𝑡𝑖
�̃� + 𝑡𝑖,𝑗

𝑎 )̃𝑥𝑖,𝑗
𝑎 (1 − 𝑦𝑖

𝑎,𝑏), 𝑖, 𝑗 ∈ 𝑁1, 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝐷, 𝑎 ∈ L               (10) 

                            𝑇𝑗
𝑏𝑥𝑖,𝑗

𝑏 𝑦𝑖
𝑎,𝑏 = (𝑇𝑖

𝑎 + 𝑡𝑖
𝑎,𝑏 + 𝑡𝑖,𝑗

𝑏 )̃𝑥𝑖,𝑗
𝑎 𝑦𝑖

𝑎,𝑏 , 𝑖, 𝑗 ∈ 𝑁1, 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝐷, 𝑎, 𝑏 ∈ L                      (11) 

                                         𝜉𝑖
3𝑦𝑖

𝑎,ℎ = (𝛾𝑖
ℎ − 𝜉𝑖

1 − 𝜉𝑖
2 − 𝑇𝑖

𝑎)𝑦𝑖
𝑎,ℎ , 𝑖 ∈ 𝑁1 𝑎𝑛𝑑 𝑖 ≠ 𝐷, 𝑎, ℎ ∈ L                             (12) 

                                                               𝑥𝑖,𝑗
𝑎 ∈ {0,1}, 𝑎 ∈ L, 𝑖, 𝑗 ∈ 𝑁1 𝑎𝑛𝑑 𝑖 ≠ 𝑗                                                      (13) 

                                                             𝑦𝑖
𝑎,𝑏 ∈ {0,1}, 𝑎, 𝑏 ∈ L, 𝑖 ∈ 𝑁1 𝑎𝑛𝑑 𝑖 ≠ 𝐷                                                    (14) 
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Constraints (2) and (3) ensure that passenger’s total 

travel cost and transfer duration are within the ac-

ceptable range of passengers. Constraints (4), (5) 

and (6) ensure that passenger arrives at their destina-

tion from starting point. Constraint (7) ensures that 

only one mode of transport is selected between two 

transfer nodes. Constraint (8) prevents multiple 

transfers at transfer nodes. Constraint (9) ensures 

that passenger can only board the transfer vehicle af-

ter passing the necessary transfer steps. Equations 

(10) and (11) represent the relationship of arrival 

time between two transfer nodes Transfer nodes that 

passenger needs to pass. Equation (12) is the calcu-

lation formula for waiting duration. Equations (13) 

and (14) mean that all the decision variables are bi-

nary. 

Take Figure.1 as an example and the network condi-

tions are shown in Table 1 and Table 2. Suppose that 

a passenger takes line 201 from node 1 to node 2, 

transfer 202 to node 5, take line 103 to node 8 and 

then take 201 to node 9. The number of stops (in-

cludes intermediate nodes) that passenger travelled 

by rail transit arriving node 5 is 6, therefore, the cost 

of the two rail transit lines is $2. And the cost for the 

passenger from node 5 to node 8 and from node 8 to 

node 9 is $2 respectively. The total cost of the pas-

senger from node 1 to node 9 is $6.

 

2

1

3

4

5

6

8

7

9

walk  bus or rail transit lines

The transfer nodes The intermediate nodesThe origin and destination  nodes of travel  
Fig. 1. An example of transit network  
 

Table 1. Information of running lines 

Line co-

lour 
Line ID 

The earliest departure time from origi-

nating stop (AM) 

Departure head-

ways(min) 

The transport nodes that pass 

through sequentially 

Red 
101 6:00 10 2-4-8 
106 6:10 10 4-8-9 

201 6:00 10 1-2-4-8-9 

Yellow 
102 6:10 8 1-2-5-7-9 

202 6:00 6 1-2-5-7-9 

Blue 
103 6:00 10 1-3-5-8-9 
203 6:00 6 3-5-8 

Green 104 6:00 10 3-6-5-8-9 

Cyan 105 6:00 10 1-3-6-7-9 

Purple 204 6:00 6 5-3-1 

Note: The bus Line ID from 101 to 106, the rail traffic line ID from 201 to 204 and the line 3 represents walk. 

 

Table 2. Sectional charging rule of rail traffic  

Number of passing  

nodes 
[1,6] (6,11] (11,17] (17,24] (24,32] (32,+∞) 

fares ($) 2 3 4 5 6 7 
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3. Solution methodology 

GA has been widely applied to optimization prob-

lem based on its strong random search abil-

ity(Bagheri et al., 2020). However, the optimization 

efficiency decline of single heuristic algorithms re-

sults from the complexity and uncertainty of real-

world problems. This problem is better solved by 

simulation optimization algorithm (A. A. Juan et al., 

2015). Combined by heuristic algorithm and simula-

tion optimization algorithm, hybrid simulation opti-

mization algorithm significantly improves the effi-

ciency of heuristic algorithm (Guimarans et al., 

2018). The development of pseudo-random number 

generators has created conditions for solving optimi-

zation problems by using probabilistic methods such 

as Monte Carlo simulation (Angel A. Juan et al., 

2010). Monte Carlo simulation is a method to solve 

random problems with random simulations and sta-

tistical experiments. Integrated with heuristic algo-

rithms, Monte Carlo simulations are more efficient 

to solve stochastic optimization problems (Yeh et 

al., 2010). The randomness of fitness value evalua-

tion is the feature of stochastic optimization prob-

lems. This difficulty is solved by the simulation 

technique which regards a given number of the sam-

ples’ average value as the true fitness value of the 

solution (S. Zhang et al., 2017). 

Many probabilistic uncertainty problems can be 

solved by Monte Carlo simulation (Janssen, 2013). 

Stochastic of urban transport network can be simu-

lated by Monte Carlo simulation (see, for instance 

(Chen et al., 2016; Luan et al., 2019)). When road 

section’s travel duration is independently distrib-

uted, there are two methods to solve the shortest path 

problem in a stochastic network. One method ob-

tains the cumulative distribution function of the path 

travel duration through traditional calculus method. 

However, this method cannot solve all the shortest 

path problems in a stochastic network (Ji et al., 

2011). For example, when road section’s travel du-

ration is correlated, it is a difficult task to obtain the 

cumulative distribution function of path travel dura-

tion. Moreover, because of the factors that vehicles 

are restricted by the schedules and transportation 

modes with different travel time distribution func-

tion are common-lines, it is more difficult to solve 

the cumulative distribution function. Another ap-

proach to solve stochastic shortest path problems is 

through simulation (Zockaie et al., 2013). The sim-

ulation-based method has the advantages of simple 

implementation, flexible structure, and can adapt to 

a variety of problems. In addition, the approach 

seems to provide a good alternative plan in cases 

where other algorithms encounter difficulties 

(Zockaie et al., 2014). In realistic transportation net-

work, the distribution function of travel duration and 

dwell duration of different transportation modes on 

road section can be obtained. Therefore, time param-

eters of various travel situations can be simulated by 

Monte Carlo simulation, so as to transform the sto-

chastic shortest path problem into the shortest path 

problem under the determined network. 

To the best of our knowledge, there is less previous 

work concerning such stochastic methods in travel 

path optimization literature. In this regard, this paper 

proposes a solving method combining GA and 

Monte Carlo simulation. The rest of this section is 

devoted to specific simulation methods and all the 

examples mentioned in this section are based on Fig-

ure. 1. 

 

3.1. Encoding and decoding scheme 

This study uses two-part integer encoding to encode 

passenger travel plan. The encoding of first para-

graph represents the sequence of the transfer nodes 

in travel plan. The encoding of second paragraph 

represents the lines between nodes. When nodes are 

disconnected, the corresponding encoding of second 

paragraph is represented by 0. It needs to judge 

whether the routes’ codes of the encoding of second 

paragraph before and after the transfer node are 

same. If the two codes represented different lines, 

transfer behaviour happens at the node, otherwise, 

the transfer behaviour not happen. The schematic di-

agram of encoding and decoding is shown in Figure. 

2.

 

 
Fig. 2. Schematic diagram of encoding and decoding 
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3.2. The generation of the initial population 

Section 3.1 introduces the encoding and decoding 

scheme of a single chromosome. Many such chro-

mosomes constitute a population. In this paper, pop-

ulation size (𝑝𝑠) is used to represent the number of 

chromosomes in a population. The following steps 

explain how to generate an initial population: 

Step1: The path with the shortest expected time be-

tween 𝑂 and 𝐷 is found by Floyd algorithm, which 

is regarded as the individual’s encoding of first par-

agraph. 

Step2: The transportation modes between transfer 

nodes in the encoding of first paragraph are selected 

randomly from existing transportation modes be-

tween transfer nodes. 

Step3: Select lines according to the selected trans-

portation modes and route information between 

transfer nodes, then, the individual’s encoding of 

second paragraph is generated. 

The detailed method of line determination is shown 

in Table 3. 

Step4: The whole algorithm terminates, when cur-

rent population number reaches required number. 

Otherwise, the expected time between transfer nodes 

of the shortest path found previously is expanded 1.2 

times by the algorithm (to ensure the diversity of the 

population), and performs Step1 to seek the shortest 

path from 𝑂 to 𝐷.  

 

3.3. Selection and elite retention strategy 

The reciprocal of individual’s fitness value (passen-

ger’s travel duration) is taken as the evaluation func-

tion, and roulette selection is applied to select indi-

viduals. Elite preservation strategy is adopted in the 

genetic process. 

 

3.4. Crossover  

There are two kinds of crossover operation. The first 

kind of operation is shown in Figure.3. If the same 

transfer nodes exist in two individuals’ the encoding 

of first paragraph (except for 𝑂 and 𝐷), an identical 

 

 

Table 3. The method of line determination 
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node is selected as the crossover position to ex-

change gene fragment. Then the corresponding 

crossover operation is performed in the two individ-

uals’ the encoding of second paragraph; The second 

kind of operation is shown in Figure.4. If two indi-

viduals do not have the same transfer nodes in the 

first paragraph of the code, the crossover position is 

selected randomly at the same transfer nodes (except 

for 𝑂 and 𝐷) of the two individuals. It is worth no-

ticing that the new connections that do not connect 

directly may be generated between two transfer 

nodes. In this condition, the intermediate transfer 

node of the two transfer nodes will be repaired by 

Floyd algorithm. The missing part of the encoding 

of second paragraph caused by the crossover opera-

tion will be replenished by Step2 and Step3 of the 

generation of the initial population. During the 

model solving process, we use the crossover proba-

bility (𝑃𝑐) to control whether the chromosome per-

forms the above crossover operation. The higher the 

𝑃𝑐, the higher the probability that the chromosome 

will perform the crossover operation. On the con-

trary, the probability is smaller.

1 2 5 8 9 201 202 103 103

1 3 6 5 7 9 105 105 104 202 202

1 2 5 7 9 201 202

1 3 6 5 8 9 105 105 104

Offspring 1

Offspring 2

Crossover operation

202 202

103 103

Individual 1

Individual 2

 
Fig. 3. Crossover operation with the same node 

1 2 4 8 9 201 201 201 106

1 3 5 7 9 103 103 102 102

1 2 5 7 9 201 202 102 102

1 3 4 8 9 103 201 106

Individual 1

Individual 2

Crossover operation

Path correction

1 2 5 7 9 201 202 202 202

3 5 4 8 9 103 103 3 201 106

Offspring 1

Offspring 2 1

 
Fig. 4. Crossover operation with no the same node 
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3.5. Mutation 

The mutation operator expands the search range of 

GA. For the solution structure of the problem, a mu-

tation operator based on replacing a node is designed 

for GA, which is described in Figure.5. A node se-

lected randomly (except for 𝑂 and 𝐷) in individual's 

the encoding of first paragraph is deleted by muta-

tion operation. Then an alternative path between the 

one previous and latter transfer nodes of the transfer 

node is searched by Floyd algorithm. If there is no 

valid path, the latter transfer nodes of the selected 

transfer node will move backward one transfer node 

and search again until a valid path is found. The 

missing part of code in the encoding of second par-

agraph can be completed by Step2 and Step3 of the 

generation of the initial population. In the process of 

solving the model, the mutation probability (𝑃𝑚) is 

used to control the chromosome to perform the 

above mutation operation. The higher the 𝑃𝑚, the 

higher the probability of chromosome mutation. On 

the contrary, the probability is smaller.  

It is worth noticing that the same transfer nodes may 

exist on the encoding of first paragraph after the 

crossover and mutation operation, which leads to 

loops. The method of avoiding loops is as follows: 

delete the fragment between two identical transfer 

nodes and keep one of the same transfer nodes. Then 

the encoding of second paragraph deletes the rele-

vant gene fragment according to the first paragraph. 

Figure.6 depicts the steps of avoiding loops’ met-

hod. 

 

3.6. Stopping conditions and population man-

agement strategy 

When the number times of current iterations exceed 

the maximum number of iterations (MAXGEN), the 

entire algorithm terminates. 

In this paper, we adopt two kinds of population man-

agement strategies including single population and 

multiple population, which both meet a given popu-

lation size. The single population management strat-

egy performs the operations of select, crossover and 

mutation for the whole population. However, the 

multiple population management strategy performs 

iterative evolution in multiple independent and par-

allel sub-populations, and carry out gene exchange 

among the populations after fixed intergenerational 

 

 
Fig. 5. Mutation operation 

 

 
Fig. 6. Handling methods for loops 
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evolution, so as to realize different process of opti-

mal search. Afterwards, the multiple population 

management strategy performs crossover operation 

by selecting the best individual in each generation to 

generate new individuals and evaluate the fitness 

values. Moreover, it selects the optimal solution 

from the local optimal solutions, the fitness value of 

new individuals and the current global optimal solu-

tions. Then updates the global optimal solution im-

mediately and reserves the optimal individual to the 

next generation of population. Considering the supe-

riority of the Monte Carlo simulation in dealing with 

uncertain problems described above, the paper com-

bines the single population management strategy 

and the multiple population management strategy 

with the Monte Carlo simulation. The former is that 

the single population management strategy based on 

the Monte Carlo simulation (MCGA-I) and the latter 

is that the multiple population management strategy 

based on Monte Carlo simulation (MCGA-II). 

 

3.7. Fitness value calculation based on Monte 

Carlo simulation 

This paper uses Monte Carlo simulation to simulate 

vehicle running duration and dwell. We use 𝑚  to 

represent the m-th scenario of Monte Carlo simula-

tion, and use 𝑀 to represent the total number of sce-

narios to be simulated. In every scenario, calculate 

the shortest passenger travel duration based on the 

randomly obtained vehicle running duration and 

dwell duration. Then, take the average of the shortest 

passenger travel duration of 𝑀 scenarios as the indi-

vidual objective function. The detailed calculation 

process is shown in Table 4. 

 

Table 4. The process of calculating individual fitness value 
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3.8. Calculation of passenger waiting duration 

Passenger waiting duration is determined by the first 

arriving vehicle of the transfer line. In urban multi-

modal transportation network, there are multiple 

transfer lines for passenger to choose. At transfer 

nodes, passenger generally tend to choose the first 

arriving vehicle which can transport them to a sta-

tion closer to destination. Two transfer lines in Fig-

ure.7 are taken as an example. Suppose that a pas-

senger will transfer at node 5 and the time after the 

behaviours of alighting vehicle and possible walking 

are fixed. We assume that the transfer vehicle arrives 

just at the moment that passenger finish the two 

above behaviours. The passenger waiting duration 

can be calculated by the difference between the ac-

tual departure time of originating stop and the origi-

nating stop’s hypothetical departure time that comes 

from the backward derivation of dwell duration and 

running duration. In Figure.7, assume that the dwell 

duration of both lines the 104 and 103 are 1min (it is 

obtained randomly by the distribution function in the 

program) and 𝜉1  is approximately 10s. The trans-

portation mode between node 5 and node 9 is as-

sumed as bus and both the lines 103 and 104 can take 

passenger from node 5 to node 9. The timetables of 

the lines 103 and 104 is shown in Figure.1. The time 

when passenger arrives at node 5 is 7:00, so the hy-

pothetical departure time of line 104 is calculated by 

backward derivation as 6:51:10. Comparing it with 

the actual departure time 7:00, the waiting duration 

of passenger at node 5 is 8min50s. In the same way, 

the hypothetical departure time of line 103 is 6:48:10 

and the actual departure time is 6:50, so the waiting 

duration of passenger at node 5 is 1min50s. 

 

 

3.9. The discriminant method of common-lines 

A line from many common-lines can be randomly 

selected by passenger to travel. For example, the 

travel plan is that passenger will go through the 

nodes 1-2-5-8-9 in sequence and the lines through 

these nodes are shown in Figure.8. Suppose that the 

modes of transportation are B-R-B-B in the passen-

ger travel plan. It is inevitable that passenger will 

transfer at the nodes 2 and 5 due to the different 

transport modes before and after the nodes 2 and 5. 

Lines 101 and 102 meet the passenger travel plan 

from node 1 to node 2, in other words, the common-

lines from node 1 to node 2 are lines 101 and 102. 

Although both lines 102 and 202 can take passenger 

from node 2 to node 5, the transportation mode is 

rail transit from node 2 to node 5 in the passenger 

travel plan. Therefore, passenger is only able to take 

line 202 to node 5, and there is no common-lines at 

node 2 in this passenger travel plan. Passenger trans-

fers at node 5 and the mode of transportation from 

node 5 to node 8 and node 8 to node 9 are bus. There-

fore, the lines 103 and 104 are common-lines, be-

cause them conform to the mode of transportation in 

passenger travel plan from node 5 to node 9. 
 

 
 

Fig. 8. Running lines passed through the nodes of 

travel plan 

1 2 5 8 9
      

3 6

5min 6min

3min

5min

At this node, passenger transfers 

line to node 9

Passenger travel path Line 103 Line 104

Nodes of travel plan Non-travel plan nodes

 
Fig. 7. Passenger travel diagram 
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After introducing the algorithm approach proposed 

by us, it seems useful to employ Figure. 9 to sum-

marize the method. The distinguishing features of 

the proposed algorithm are highlighted with a differ-

ent colour. 

 

4. Numerical examples 

4.1. Problem example 

To examine the effectiveness of the algorithm, this 

paper simulates a multimodal transport network with 

30 nodes (nodes 1 and 30 represent the origin node 

and destination node of passenger travel, respec-

tively, other 28 nodes are transfer nodes). Because 

of charging rule, the number of intermediate nodes 

of rail transit line is shown in Table 5 and the inter-

mediate nodes of bus line are not given. The fare 

system of rail transit is shown in Table 2 and the flat 

fare of bus is $2. The dwell duration of rail transit 

and bus at the intermediate nodes are included in the 

vehicle’s running duration. The distribution function 

of vehicle’s running duration between nodes are 

shown in Figure.10. The dwell duration of the vehi-

cle at transfer nodes is subject to the uniform distri-

bution function of U (1.5,2). The alighting duration 

and possible transfer walking duration of passenger 

are 10s and 2min, respectively. The conditions that 

the number of transfers are not more than 3 times 

and the allowable travel cost should be less than $8. 

Table 6 shows timetables of lines and the transfer 

nodes that lines pass through. 

 

Start

Generate randomly initial population
Judge the common-lines between 

transfer nodes

Monte Carlo simulation simulates M situations

Based on distribution function of 

transportation modes, generate  

running duration and dwell duration 

Evaluate the fitness value for individuals
Calculation of passenger waiting 

duration

Roulette selection selects individuals and elite 

preservation strategy keeps best individual

Mutation and crossover

Stopping criteria 

reached?

No

Select the most preferred solution 

End

Yes

Perform single population 

management strategy or multiple 

population management strategy

 
Fig. 9. Flowchart of the proposed algorithm 
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Fig. 10. Schematic diagram of transportation network 

 

Table 5. Number of intermediate nodes between 

transfer nodes of lines of rail traffic 

O D 
Number of interme-

diate nodes 
O D 

Number of interme-
diate nodes 

1 3 1 12 17 2 

1 8 6 13 23 4 

3 7 1 14 22 1 
3 13 8 17 21 2 

6 12 3 18 19 3 

7 11 1 20 28 1 
8 9 3 21 24 3 

8 11 1 22 24 2 

9 19 2 23 25 4 

11 17 3 24 30 2 

11 20 2 28 29 3 

Note: There are no routes or intermediate nodes be-

tween the nodes not mentioned in above table. 

 

The passenger itinerary planning is optimized ac-

cording to the network conditions in Table 2, Table 

5 and Table 6. Some parameters are set as follows: 

𝑃𝑐 =0.9; 𝑃𝑚 =0.5; MAXGEN =50; M=20; 𝑝𝑠 =50; 

the size of two sub-populations of MCGA-II are 20 

and 30, respectively. The convergence process at 

high 𝑃𝑚 and 𝑃𝑐 is shown in Figure.11. We can see 

that both the curve of MCGA-I and MCGA-II can 

keep stable within 50 generation, which means the 

algorithm is effective. 

Table 6. Data of running lines 

Line 

ID 

The transport nodes 
that pass through se-

quentially 

The earliest de-

parture time 

from originating 
stop (AM) 

Departure 
headways 

(min) 

101 
1-2-8-11-17-18-21-

24 
6:00 10 

102 1-3-6-12-16-21-27 6:10 8 

103 
1-3-13-14-22-24-26-

29 
6:00 10 

104 4-7-11-20-29-30 6:00 10 
105 1-4-5-13-15-23-25 6:00 10 

106 4-14-23-24-30 6:10 10 

107 8-7-12-16-26-30 6:10 8 
108 1-8-9-19-28-29 6:00 10 

109 
2-7-12-17-18-19-20-

28 
6:00 8 

110 
2-8-9-10-19-20-29-

30 
6:10 8 

111 2-6-14-23-24-30 6:00 10 
112 5-13-15-23-25-30 6:10 10 

113 6-12-17-21-27-29-30 6:00 10 

114 2-7-12-16-26-30 6:10 8 
201 1-8-9-19-28-29 6:00 6 

202 1-3-7-11-20-28 6:00 6 

203 3-13-23-25 6:00 6 

204 14-22-24-30 6:00 6 

205 8-11-17-21-24-30 6:00 6 

206 6-12-17-18-19 6:00 6 
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Fig. 11. Algorithm convergence process under high 𝑃𝑐 and 𝑃𝑚 

 

The crossover probability and mutation probability 

are significant parameters affecting the entire evolu-

tion process. For determining the two parameters, 

this paper changes 𝑃𝑐 from 0.6 to 0.9 and change 

𝑃𝑚 from 0.1 to 0.5, respectively. The average value 

of fitness values is calculated under different 𝑃𝑚 

and 𝑃𝑐 probabilities and the results of the five times 

repeated experiments are shown in Figure.12 and 13. 

In these figures, the change of fitness value from 

high to low corresponds to the change of colour from 

dark red to purple on the surface. The figure on the 

surface where the 𝑃𝑚 and 𝑃𝑐 axis intersect is a pro-

jection of a three-dimensional surface, and the 

spherical point represents the fitness value corre-

sponding to the scale on the axis of 𝑃𝑚  and 𝑃𝑐 . 

From these figures, we can see that the fitness values 

of both MCGA-I and MCGA-II are a range of 69 to 

84, which means that 𝑃𝑚 and 𝑃𝑐 have an influence 

on the solution result of the both algorithms. Purple 

and blue represent low fitness values. We need to 

find the 𝑃𝑚  and 𝑃𝑐  with lower fitness values for 

both algorithms to compare those algorithms. A 

higher 𝑃𝑚 and 𝑃𝑐 may make the optimal solution 

more likely to be found, but it will cost more time. 

Therefore, in order to reduce both algorithms’ solv-

ing time under the condition of similar fitness val-

ues, we set the values of 𝑃𝑐, 𝑃𝑚 as 0.7 and 0.2 re-

spectively. 

Take 𝑃𝑐=0.7; 𝑃𝑚=0.2; 𝑝𝑠=50 or 80 as an example. 

The size of two sub-populations of MCGA-II are (20 

and 30) or (30 and 50), respectively. Table 7 sum-

marizes the results of 10 times repeated experiments 

under different population size. As can be under-

stood from Table 7, no matter how the two popula-

tion sizes of MCGA-I and MCGA-II changes, Best, 

Max and A-fit of two algorithms are almost same. 

Therefore, both of them can find the optimal solu-

tion. However, Nt and Time of MCGA-II are smaller, 

which means that it can find the optimal solution 

faster. Figure.14 depicts the disturbance of Nt, it 

shows that the degree of change of Nt of MCGA-II 

is steadier than MCGA-I’s whether 𝑝𝑠 is 50 or 80. 

Moreover, the average value of Nt is the lowest 

when 𝑝𝑠 is 50. As stated above, the optimization ef-

fect of MCGA-II is relatively better. This paper sets 

𝑝𝑠=50 to get the result of passenger itinerary plan-

ning.  

The convergence process of the experiment (𝑝𝑠=50) 

is shown in Figure.15. As can be found from the fig-

ure, the curve keeps stable after 25 generations. The 

transfer nodes that passenger passed in final opti-

mized solution is 1-3-7-11-20-29-30. Passenger first 

takes line 202 to node 20 and then transfer line 110 

to node 30, which will cost passenger 69.63 mins 

and $6. 
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Fig. 12. Fitness values of MCGA-I under different 𝑃𝑐 and 𝑃𝑚 

 

 
Fig. 13. Fitness values of MCGA-II under different 𝑃𝑐 and 𝑃𝑚 
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Table 7. The results of the two algorithms are compared 

parameter 
MCGA-I MCGA-II 

Best(min) Max(min) A-fit(min) Time(s) Nt Best Max A-fit Time Nt 

𝑝𝑠=50 or 

(20+30) 
69.67 83.81 76.81 387.4 28 70.09 83.62 75.19 352.1 14 

𝑝𝑠=80 or 

(30+50) 
70.89 87.26 78.35 605.2 29.6 69.94 83.42 75.06 540.5 16.6 

Note: Best is the smallest fitness value in 10 repeated experiments; Max is the largest fitness value in 10 repeated experi-
ments; A-fit is the average of fitness value in 10 repeated experiments; Time is the average of the CPU time consumed to 

get the best fitness value in 10 repeated experiments; Nt is the average of the number of iterations to first reach the optimal 

fitness in 10 repeated experiments. 
 

 
Fig. 14. The distribution of Nt 

 

 
Fig. 15. Convergence process of travel plan 
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4.2. Numerical analysis 

We perform some analyses that the relationships be-

tween total travel duration and travel cost or the 

number of transfers, respectively. The number of 

transfers and travel cost not only both affect the total 

travel duration, but also affect each other. In order to 

avoid the two parameters to influence each other, 

this paper repeats experiments regardless of con-

straints. Two best passenger travel plans are pre-

sented in Table 8. According to the Table 8, passen-

ger only needs to transfer one time and spend $6. 

 

Table 8. Data of travel plan under high number of 

transfers and travel cost 

The serial 

number 

Passenger takes 

lines 

Travel dura-

tion (min) 

Actual travel 

cost ($) 

1 
202-202-202-
202-110-110 

69.464 6 

2 
202-202-202-

202-104-104 

69.527 6 

 

This paper sets the number of transfers is three times 

and changes the allowable travel cost from $2 to $8. 

Table 9 provides the optimal passenger travel plans 

under the different allowable travel cost. The influ-

ence of the allowable travel cost on the total travel 

duration can be divided into three parts. The allow-

able travel cost of the first part ranges from 2 to 3, 

the second part ranges from $4 to $5 and the third 

part equals to or more than $6. In the first part, algo-

rithm cannot supply optimal path to passenger be-

cause passenger cannot take only one line from 

origin node to destination node in the experiment. In 

the second part, passenger can only choose bus lines 

or rail transit lines with shorter travel distances, 

which may lead passenger spend more time during 

travel.  In the third part, appropriate increment of the 

allowable travel cost leads passenger to choose the 

lines with shorter travel duration but higher cost 

such as the allowed travel cost reaches $6 yuan from 

$4. However, when the allowed travel cost exceeds 

$6, it cannot cause the decline of travel duration, 

which is apparent from Table 8. As for number of 

transfers, algorithm keeps it at one time. The reason 

is that a greater number of transfers means that pas-

senger will spend more time for transferring vehi-

cles, which increases the travel duration of passen-

ger. 

 

Table 9. Data of travel plan under different travel 

cost 

Allowable 

travel cost ($) 

Passenger take 

lines 

Travel dura-

tion (min) 

Actual travel 

cost ($) 

4 
202-202-114-

114-114-114 

75.085 4 

5 
202-202-114-

114-114-114 

76.014 4 

6 
202-202-202-

202-110-110 

69.464 6 

 

5. Conclusions 

The main result of this paper is to establish a com-

bined optimization model that considers multiple 

modes of transportation, timetables of public trans-

portation, passenger’s travel cost, and the number of 

transfers under the condition of uncertain vehicle 

running duration and dwell. From a practical point 

of view, the research results of this paper are mainly 

to provide travel plan that meet the needs of passen-

ger, improve passenger’s travel efficiency, and en-

courage more passengers to choose public transpor-

tation to travel. Beyond the reported results, this 

study also emphasizes the importance of considering 

the uncertainty of the urban transportation network 

and the common-lines of multiple transportation 

modes in order to obtain a more realistic passenger 

travel route with the shortest travel time. The key 

conclusions are summarized as follows: 

(1) The proposed combination algorithm performed 

well in the numerical example. The different 

values of 𝑃𝑐 and 𝑃𝑚 have effect on the optimal 

result. And the population size has little effect 

on the results of MCGA-I and MCGA-II to ob-

tain the optimal fitness value. 

(2) Both MCGA-I and MCGA-II can solve the prob-

lem, however, MCGA-II can get better results in 

a shorter CPU time. 

(3) Through the numerical analysis, the allowable 

travel cost has a positive correlation with travel 

duration within an appropriate range. However, 

the impact of changes in the numbers of trans-

fers on travel duration is not obvious. 

(4) In the optimization of passenger travel routes, 

different transportation modes include different 

transportation lines. The line’s timetable and the 

dwell duration of vehicle at the node will have 

impact on the number of transfers and travel du-

ration of passengers. 
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Future research could be performed from the follow-

ing aspects: 

(1) The algorithm used in this paper is effective in 

the proposed passenger travel scenarios, but 

whether it is still applicable to more complex 

passenger travel scenarios remains to be further 

studied. 

(2) There are many algorithms to solve the travel 

route optimization problem, but how to find the 

optimal route faster and more efficiently still 

needs further research. 
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