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Abstract: The objective of this paper is to discuss the replication of passenger congestion (overcrowding) 

effects on output path choices in public transport assignment models. Based on a comprehensive literature 

review, the impact of passenger overcrowding effects was summarised in 3 main categories: the inclusion of 

physical capacity constraints (limits); the feedback effect between transport demand and supply performance; 

and the feedback effect on travel cost (discomfort penalty). Further on, sample case studies are presented, 

which prove that the inclusion of capacity constraints might significantly influence the assignment output and 

overall results in public transport projectsô assessment ï yet most state-of-the-practice assignment models 

would either miss or neglect these overcrowding-induced phenomena.  

In a classical 4-step demand model, their impact on passengersô travelling strategies is often limited to path 

(route) choice stage, while in reality they also have far-reaching implications for modal choices, temporal 

choices and long-term demand adaptation processes. This notion has been investigated in numerous research 

works, leading to different assignment approaches to account for impact of public transport capacity 

constraints ï a simplified, implicit approach (implemented in macroscopic-based models, e.g. PTV VISUM), 

and a more complex, explicit approach (incorporated in mesoscopic-based models, e.g. BusMezzo). In the 

simulation part of this paper, sample tests performed on a small-scale network aim to provide a general 

comparison between these two approaches and arising differences in the assignment output. The implicit 

approach reveals some differences in assignment output once network capacity constraints are accounted for 

ï though in a simplified manner, and producing somewhat ambiguous output (e.g. in higher congestion 

scenarios). The explicit approach provides a more accurate representation of overcrowding-induced 

phenomena - especially the evolving demand-supply interactions in the event of arising congestion in the 

public transport network. Further studies should involve tests on a city-scale, multimodal transport model, as 

well as empirical model validation, in order to fully assess the effectiveness of these distinct assignment 

approaches. 

Highlights: 

- The paper discusses the inclusion of overcrowding effects on path choices in public transport 

assignment models 

- These can be grouped into 3 main categories: physical constraints, demand-supply feedback and path 

discomfort cost 

- Sample case studies show that their inclusion may substantially affect the assignment output 

- Two general methods of modelling capacity constraints are: the implicit and explicit approach 

- An illustrative example shows that both approaches produce different output with the explicit one being 

more specific and adequate 

Key words: public transport assignment, passenger congestion, overcrowding, crowding discomfort, path 

choice, public transport capacity.



Arkadiusz Drabicki, Rafağ Kucharski, Andrzej Szarata 

Modelling the public transport capacity constraintsô impact on passenger path choices é 

 

8 

1. Introduction  

Path choice (or route choice) process comprises a 

crucial step within every single transport assignment 

model (Fig. 1). The path (route) choice algorithm is 

most commonly described by means of the 

probabilistic, discrete choice model and the random 

utility theory (Cascetta, 2001). The bottom line is 

that the probability of choosing a given O-D path is 

related to the cost-utili ty formula, which reflects the 

relative (dis)utility associated with travelling along 

that path, among all the alternative O-D paths 

(routes). The path cost formula comprises the 

following trip components: perceived travel times 

(i.e. in-vehicle, waiting, walking times), monetary 

costs (fares), transfer penalties and temporal utilities 

of earlier (or later) O-D connections ï which are 

described in relative (weighted) terms, reflecting the 

user perceptions of disutility associated with 

particular trip stages (e.g. increased disutility 

associated with waiting and walking times). This 

path cost evaluation algorithm forms a key 

component within the classical 4-stage assignment 

modelling framework, where it is applicable at the 

modal split stage ï i.e., used to evaluate the choice 

probability between the public and private transport 

modes (Szarata, 2014) ï and eventually at the trip 

assignment stage ï i.e., used to compute the choice 

probability of feasible network paths (routes, lines 

etc.). 

 

 
Fig. 1. Path (route) choice process in the 4-stage 

assignment model (source: Hartl, 2013) 

 

In a summary, this means that the passenger choices 

in public transport networks are principally a 

function of journey times and service frequencies ï 

i.e. main factors which are recurrently deemed most 

important according to the passenger surveys 

(Rudnicki, 1999). However, a major factor which is 

either missing or not properly exploited in most 

state-of-the-practice assignment models, concerns 

the inclusion of line (service) capacity, as well as the 

associated (dis)comfort aspects ï which might 

actually also have a notable effect on passengersô 

output choices, especially when considering various 

public transport modes with distinct capacity rates - 

i.e. mass transit (underground, urban rail) vs. feeder 

(light rail) systems, or conventional (bus, tram) vs. 

unconventional modes (monorail) (Drabicki et al., 

2016). 

The implications of network capacity constraints 

(limits) are more investigated in case of private 

transport assignment (ŧochowska, 2014), where 

they are typically included in form of the volume-

delay function (VDF). The VDF function describes 

the effects of increasing travel times as a result of 

rising traffic flows (volumes) ï i.e. a non-linear 

travel time penalty which increases sharply once 

traffic volume approaches the saturation flow rate 

(i.e. the assumed road capacity limit). However, 

whereas the VDF functions  are commonly available 

and widely applied to replicate the capacity limits in 

modern-day private transport (PrT) assignment 

models (Branston, 1976), the incorporation of 

capacity constraints effects in public transport (PuT) 

assignment models remains ï to the best of our 

knowledge ï much less examined and advanced, 

usually limited to individual case studies and 

modelling developments; in practical approach, the 

implications of capacity constraints on passenger 

path choices are often neglected in state-of-the-

practice modelling algorithms.  

The objective of this paper is to contribute to the on-

going research discussion on replicating the 

overcrowding effects in public transport assignment 

models. The literature review part of this paper will 

outline the main aspects of their impact on passenger 

path choices (which should be accounted for in 

simulation models) and present sample results from 

practical transportation studies. Further on, the 

simulation works on a small-scale network will 

reveal the arising differences in assignment output 

between the two common modelling approaches to 

public transport capacity constraints. Our aim is that 

the observations and conclusions from this study 

would illustrate the possibility of reproducing the 

overcrowding effects in these two main modelling 

algorithms, provide indications for their application 

on bigger-scale transport models ï and together with 

a summary of the state-of-the-art in public transport 

congestion modelling, it would also point out fields 

for future improvement works. 
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The remainder of this paper is organised in a 

following way: section 2 focuses on literature 

review regarding the incorporation of public 

transport network capacity constraints and their 

impact on output passenger path choices. Section 3 

highlights the importance of proper appraisal of 

public transport capacity constraints effects in 

assignment models, presenting results from sample 

case studies, where capacity constraints were taken 

into account and led to substantially different project 

assessment indicators. Section 4 presents two 

distinct modelling algorithms of public transport 

networks, where the influence of capacity 

constraints can be described in 2 various approaches. 

These are followed by practical simulations on 

sample networks in section 5, where both modelling 

approaches lead to different network performance, 

and consequently ï distinct simulation output. 

Finally, section 6 provides the summary and 

conclusions for further research works, and 

indications for future applications on bigger, city-

scale public transport assignment models. 
 

2. Literature review  

Substantial amount of research works in recent years 

has been devoted to the notion of public transport 

congestion, or more precisely ï the passenger 

overcrowding: i.e., the way it affects the passengersô 

travelling strategies, user preferences, implications 

for the transport system performance, the issues of 

service optimisation etc. - with an ultimate goal of 

the inclusion of these (often mutually dependent) 

effects in assignment models. However, though 

these state-of-the-art assignment models aim to 

replicate the impact of passenger overcrowding on 

path choice decision models in a most plausible way 

possible, they usually include only some of the 

overcrowding effects. Consequently, they often do 

not yield completely realistic results and are likely 

to underestimate the arising phenomena of 

passenger overcrowding. 

In a general overview, the effects of passenger 

overcrowding on output path choice decisions ï 

which should be accounted for in a model observing 

the public transport capacity constraints -  can be 

summarised into three main categories, as listed 

below and elaborated in subsequent sections: 

- physical capacity limits (constraints), 

- feedback effect on service performance, 

- feedback effect on passenger (dis)comfort. 
 

2.1. Passenger congestion effects in assignment 

model ï impact of physical capacity limits 

The first category of public transport congestion 

effects concerns the direct impact of physical 

capacity constraints ï i.e., the maximum 

permissible flow volume of passengers which can be 

carried by the components of public transport 

network within a specified time period. The major 

factor determining the physical capacity limits is the 

passenger load capacity of public transport vehicles 

(the max. no. of passengers able to ñget on-boardò) 

and the arising queuing phenomena at stops or 

platforms ï while (Gentile and Noekel, 2015) also 

suggest that in some cases the finite capacity limits 

of stops (platforms) themselves ï i.e. the space 

limitations ï are also of relevant importance. In 

recent literature works, the impact of physical 

capacity limits in public transport assignment has 

been typically modelled in 2 following ways: by 

means of the (so-called) implicit or explicit 

approaches. 
 

 
Fig. 2. Crowding (mark-up) cost discomfort functions, available in the implicit approach (based on (PTV 

VISUM Manual, 2016))
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The implicit approach to capacity constraints 

follows the VDF-based method used as a default in 

most private transport assignment models to 

represent the congestion effects (described earlier). 

The passenger flow capacity of network links is not 

strictly bounded by a fixed limit value, but is instead 

defined with a non-decreasing, volume-dependent 

link cost function (Fig. 2). Typically, the function 

imposes an additional cost penalty above a certain 

threshold (e.g. the assumed seat capacity), which 

reflects the rising crowding discomfort. Further on, 

as passenger volume tends towards the capacity 

limit, the so-called crush capacity, the increase in 

cost penalty becomes non-linear and very sharp. 

Once the passenger flow exceeds the nominal line 

capacity (i.e. calculated with respect to the crush 

capacity of operating vehicles), travellers are not 

explicitly prohibited from using the service (vehicle 

run), but travel cost should have now risen so 

severely, that any additional passengers should be 

ñdiscouragedò from boarding it ï i.e., an implicit 

capacity limit is imposed upon that particular service 

(vehicle run). Analogous to the capacity-constrained 

traffic assignment model, the assignment is 

calculated in an iterative procedure: in each 

consecutive simulation run, the output demand 

flows (i.e. travellersô choices) depend concurrently 

on network parameters (i.e. travelling conditions) 

calculated in preceding simulation run. The 

assignment procedure gradually converges towards 

a stable solution, and the final output (passenger 

flows, line loads and travel costs) is obtained once 

an equilibrium state is achieved. 

Typically, the path cost penalty in implicit approach 

(as e.g. in PTV VISUM model) is described either 

as a linear function of the volume-to-capacity ratio, 

or utilises a more nuanced, non-linear correlation as 

e.g. assumed by the DB and SBB functions (fig. 2) 

ï with the latter solution being perhaps more 

appropriate, as it allows to account for the non-

uniform increase rate in crowding discomfort. The 

two non-linear crowding cost functions used in the 

PTV VISUM model are analogous to the approaches 

used in rail demand modelling in the German 

railway system ï the DB function (Deutsche Bahn), 

and the Swiss railway system - the SBB function 

(Schweizerische Bundesbahnen). In these two 

functions the path cost penalty due to passenger 

overcrowding is in general exponentially correlated 

with the rising volume-to-capacity ratio, with an 

upper bound limit of the crowding cost penalty rate 

ï beyond which it converges towards a fixed penalty 

rate (typically, this would occur once the crush 

capacity limit has been reached). 

This forms a simplified method of representing the 

effects of passenger congestion in public transport 

assignment, which is usually applied within 

macroscopic models and available in common 

transport modelling tools (e.g. (PTV VISUM 

Manual, 2016)). As shown below on sample case 

studies, this assignment method enables to replicate 

some effects on passenger overcrowding on route 

choices and modal shifts, yet it comprises a rather 

simplified approach (e.g. by imposing a uniform 

cost both for travellers on-board and those waiting 

at the stops), missing the important, evolving 

congestion phenomena in public transport system. 

The explicit approach to capacity constraints 

comprises a more specific (and thus more reliable) 

representation of public transport supply and its 

interactions with travel demand. Though it has not 

been applied yet on a wider scale ï being developed 

mostly in individual algorithms (e.g. the BusMezzo 

algorithm (Cats, 2011)) and case study applications 

- its implementation has been hitherto possible in 

mesoscopic and microscopic assignment models. A 

more detailed modelling framework implies that the 

travel demand is represented by individual agents 

(passengers) progressing through the network, 

whereas travel supply is represented by individual 

vehicles (runs) defined with strict capacity limits, 

corresponding to the crush capacity values. 

Travellers arriving at the platform (stop) board the 

incoming vehicle runs according to their residual 

(available) capacity. If boarding volume exceeds the 

residual vehicle capacity, the remaining passengers 

are explicitly denied the boarding and have to wait 

for next vehicle departures ï thus, important queuing 

phenomena arise at the platforms (stops). The 

queuing discipline at stops can be commonly 

reproduced in a number of ways, notably including 

the following two (Gentile and Noekel, 2016):  

- the FIFO principle: ñfirst in, first outò ï an 

organised queuing process, consisting of the 

undersaturation queue (those who will board the 

nearest vehicle run) and oversaturation queue 

(those delayed and ñforcedò to wait yet for later 

vehicle runs), 

- the so-called mingling process: no priority rules 

are in place, and passengers joining the residual 
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queue have roughly the same boarding probability 

as others waiting at the platform. 

The resultant fail-to-board probability, which 

becomes significant as passenger congestion rises, 

has wider implications on the ensuing passenger 

path choices (Nuzzolo et al., 2012). Travellers who 

had to skip previous vehicle runs perceive additional 

disutility due to the boarding failure ï i.e. the arising 

waiting cost is perceived as relatively more 

burdensome. Consequently, they may take a 

rerouting decision and consider other, less attractive 

O-D travel routes (paths). 
 

2.2. Passenger congestion effects in assignment 

model ï feedback on service performance 

The second type of passenger overcrowding effects, 

resultant from the inclusion of public transport 

capacity limits, concerns the feedback interaction 

between the transport supply (service regularity and 

dwell times) and transport demand (passengersô 

decisions and resultant volume flows) performance. 

A principal reason underlying this interaction is that 

the dwell -time of a public transport service trip is an 

increasing function of boarding and alighting 

passenger volumes. In a summary, the feedback 

effect demonstrates itself in the following manner: 

changes in passenger flows cause fluctuations in 

dwelling times at stops, which will conversely 

induce variations in service operating times and 

headway deviations. In turn, as vehicle arrivals (and 

departures) become irregular, passenger demand is 

now unevenly distributed among the individual runs 

ï and further on, the feedback effect is amplified. 

This impedes the service regularity and reliability 

which is undesirable both for passengers (increasing 

travel times and crowding levels) as well as for 

operators (uneven utilisation of service supply).  

This important phenomenon, ñreinforcedò by the 

arising passenger overcrowding, can only be 

replicated if the modelling framework allows to 

describe the impact of demand flows on vehicle 

dwell times ï which is in practice often neglected 

especially in macroscopic assignment algorithms. 

The boarding and alighting processes are strictly 

related to passenger flow vector, which depends on 

vehicle exchange capacity, and the assumed 

ñdwelling routineò (i.e. separate or mixed doors for 

boarding and alighting). Based on a wide range of 

literature sources (summarised by (Tirachini et al., 

2013), (Gentile and Noekel, 2016)), it can be 

concluded that there is a roughly linear correlation 

between the dwell times and number of alighting 

(boarding) passengers ï the values fall usually 

within the range of 2-4 secs/pass, though these are 

likely to increase even further (up to 6 secs/pass and 

beyond) in overcrowded conditions. (Gentile and 

Noekel, 2016) provide a detailed mathematical 

framework for describing the impact of dwelling 

flows on mean and, crucially, variance values of 

dwell times and service headways ï i.e. the main 

ñtriggerò behind this feedback interaction process. 

Importantly, these time-dependent service variations 

may initially occur at individual stops or line 

sections, but will likely become amplified and 

propagate further downstream in the network. 

The feedback loop between transport demand and 

transport supply performance is probably best 

manifested in a well-known phenomenon, which 

occurs in public transport networks during 

congested conditions ï i.e. the so-called bus 

bunching effect (Fig. 3); its other denominations 

mentioned in literature sources are: bus platooning, 

clumping, pairing, the banana bus, the Bangkok 

effect (Moreira-Matias et al., 2012).
 

 
Fig. 3. Bus bunching effect, plotted on the space-time diagram (source: Attanucci, 2010)
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The bus bunching effect can be explained intuitively 

on a space-time diagram (Attanucci, 2010), under 

the simple assumption of constant (Poisson-

distribution based) passenger arrival process at 

stops, as follows: a certain vehicle run which arrives 

later than scheduled at the stop has to pick up a 

higher than average number of waiting passengers. 

Dwelling time takes longer than expected and once 

ready to depart, the vehicle is now delayed even 

further (relative to its nominal timetable). The same 

pattern will hold at the next downstream stop, where 

overcrowding conditions will likely become worse, 

the service delay will rise further, and so on. In 

contrast, the next (following) vehicle run has less 

waiting passengers to pick up, dwells shorter at the 

stop, and as a result, will run ahead of schedule. The 

relative headway between these 2 consecutive runs 

will likely decrease as they progress downstream in 

the network, and the second vehicle run may 

eventually catch up with the vehicle ahead of it ï the 

stage where vehicle runs become ñfully bunchedò or 

paired together, at which the relative headway drops 

down to zero. The bunching phenomenon leads to 

substantial impairment in public transport service 

regularity, since journey times become longer, the 

waiting times are higher (due to uneven vehicle 

spacing), and recurrently ï the average crowding 

levels increase due to uneven passenger loadsô 

distribution among the individual vehicle runs. 

One of the objectives of research works was to 

describe the main factors and critical conditions 

which induce the bus bunching effect. A common 

conclusion is that passenger demand (volume) has 

profound impact on service regularity, or more 

specifically, the resultant loading factor, defined as 

the ratio of pass. arrival rate (at stop) to pass. loading 

rate (on-board). (Newell and Potts, 1964) developed 

(possibly) a first mathematical framework for 

bunching effect, where they define this correlation 

by means of a critical bus bunching parameter. It 

describes transition from stable conditions to a self-

reinforcing bunching phenomenon state, at which ï 

if sustained over a longer time period - the buses will 

fall out of schedule even further. More advanced 

approaches emphasise the importance of passenger 

arrival pattern, which need not be always uniformly 

distributed in time. For example, (Fonzone et al., 

2015) demonstrate on the proposed algorithm that 

various possible arrival patterns would require 

different critical conditions to trigger the bunching 

effect (which could then develop in a substantially 

distinct degree). (Gentile and Noekel, 2015) propose 

a bus bunching coefficient variable, defined as a 

function of service headway between 2 consecutive 

vehicle runs. The coefficient can be used as a basic 

measure of arising bus bunching effect in the 

network, being calculated as the ratio of actual 

service headway (i.e. one resulting from fluctuations 

in dwell times) to the nominal scheduled headway ï 

the higher the headway deviation rate, the bigger the 

on-going bunching effect. An analogous formula 

can be used to estimate the bunching coefficient at a 

downstream stop, resulting from current upstream 

service conditions and passenger dwelling flows. 

Additionally, research sources mention that the bus 

bunching effect is not only related to the demand-

supply interactions at the stops, but may also be 

induced (or amplified) by other factors, such as 

general traffic characteristics, route design, road 

conditions etc. Numerous analytical models have 

been developed which allow to demonstrate their 

impact upon the output service regularity ((e.g. 

(BŃk, 2010), (Horbachov et al., 2015)) ï however, in 

this paper we will focus primarily on the influence 

of passenger congestion and the consequent 

bunching phenomena. 

 

2.3. Passenger congestion effects in assignment 

model ï feedback on passenger discomfort 

The third major type of public transport congestion 

effects concerns the arising discomfort cost and its 

implications for passengersô travelling choices. 

Evidence from passenger surveys seems to reinforce 

the fact that crowding (dis)comfort is among the 

major factors relevant to usersô travel experience ï 

e.g. results from Transport for Londonôs regular 

monitoring of customer satisfaction (Barry, 2015) 

indicate that travel comfort and crowding are rated 

as the (third and fourth) most important issues, right 

after the journey time and personal safety. Although 

journey times still form the baseline and most 

decisive factor in path choice process, the travel 

discomfort may also contribute its own mark-up 

ñpenaltyò upon the travel cost. Overcrowding affects 

the travellersô comfort perception who become more 

reluctant if their public transport services are 

routinely congested. (Tirachini et al., 2013) mention 

a wide range of psychological, sensorial and social 

factors attributed to the overcrowding effects, such 

as: risk perception of personal safety, anxiety and 
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stress, possible ill-health, propensity to arrive late at 

work, possible loss of productive time.  

Commonly, the crowding discomfort factor is 

included as an additional (mark-up) travel time 

multiplier in the general path cost formula. The 

relative (perceived) value of travel time components 

increases as rising passenger numbers (flows) 

produce a crowding externality (cost), relative to 

travelling in uncrowded conditions. The discomfort 

penalty is described as a non-linear, VDF-based 

function of volume-to-capacity ratio of a given 

travel alternative, which increases more sharply as 

crowding conditions deteriorate ï the generalised 

crowding mark-up factor formula (Gentile and 

Noekel, 2015) is based on the same VDF function as 

used in the implicit approach to modelling the 

capacity constraints (described earlier). 

A recurring question in literature sources is how to 

measure precisely the on-board crowding levels, 

with two basic approaches considered (Tirachini et 

al., 2013): 

- discomfort cost as a function of load factor 

(percentage volume-to-capacity ratio): a 

simplified measure which can be related to the 

vehicle seat capacity, or in macroscopic approach 

ï roughly to the generated line capacity ï yet it 

says very little about the actual on-board crowding 

conditions themselves, which will vary depending 

on (among others) the vehicle interior 

arrangement; studies estimate that as such the 

crowding cost is ñactivatedò from load factors 

between 60 ï 90% onwards (Tirachini et al., 

2013), (van Oort et al., 2015), 

- discomfort cost as a function of density of standees 

(per square metre): perhaps a more relevant 

measure, since crowding discomfort becomes 

much more acute once passenger load surpasses 

the vehicle seat capacity, and the estimated 

available space per passenger provides a better 

picture of the degree of crowding ñsufferedò by 

standing travellers; here, the crowding mark-up 

penalty ranges between 1.0 ï 1.6 (for those seated) 

and 1.5 ï 2.4 (for those standing), and applies 

already if density of standees rises from zero (pax. 

per sq. m) (Whelan and Crockett, 2009). 

The exact values of crowding discomfort factor 

differ among literature sources, being dependent on 

the methodology used, local context and user 

preferences, as well as individual public transport 

modes and trip characteristics (Tirachini et al., 

2013). Literature review shows that crowding 

discomfort values are likely to be higher in case of 

rail systems and increase with trip length and 

duration. The majority of studies which aimed to 

provide an estimate of crowding discomfort costs on 

passengersô choices focused mainly on long-

distance urban trips (i.e. between the suburbs and 

city centre) made with suburban or metro railways 

(Tirachini et al., 2013), (Kroes et al., 2013), (Whelan 

and Crockett, 2009), as well as intercity rail trips 

(Lieberherr and Pritscher, 2012). A meta-study 

commissioned for the UK Department of Transport 

(Whelan and Crockett, 2009) provides a 

comprehensive valuation of overcrowding costs and 

the willingness-to-pay estimate for trips made in the 

British Rail system ï which are often used as a 

guideline in transport practice (Fig. 4). 

 

 
Fig. 4. Time cost multiplier factor due to crowding - acc. to the British Rail WTP meta-study (source: Whelan 

and Crockett, 2009)
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The purpose of such modelling framework is to 

reflect the crowding discomfort impact on a certain 

share of travellers who would adjust their travel 

patterns, so as to avoid the worst overcrowding 

circumstances - and utilise other O-D travel 

alternatives. This should replicate the long-term 

adaptation process in travelling strategies, as 

repeated experience of overcrowding will impact the 

3 important aspects: 

- path (route) choice: travellers will be less likely to 

use notoriously overcrowded services and would 

seek other, perhaps less attractive, public transport 

connections; in the modelling approach, this could 

imply a demand shift towards services with higher 

spare capacity (e.g. mass transit systems), or less-

popular public transport connections (e.g. a trade-

off in longer journey times combined with less-

crowded travel conditions), 

- mode choice: as a consequence of routine 

overcrowding, public transport service would lose 

on their relative attractiveness, and travellers 

would likely revert to using private cars; for short-

range trips, possibly an increase in walking (or 

cycling) trips could be observed, 

- departure time choice: perhaps the most 

significant impact of passenger congestion on 

travel choices - in the day-to-day adaptation 

process travellers will seek to avoid the time 

periods of peak congestion, and would utilise the 

same O-D travel route but at less-popular travel 

times; the departure-time updating process would 

imply a higher passenger volume migration 

especially towards earlier departure runs. 

This adaptability phenomenon of passengersô path 

choice strategies in response to crowding discomfort 

can be incorporated in the modelling framework by 

means of a conventional, iterative user equilibrium 

approach (in a simplified manner), or more reliably 

ï by employing a day-to-day learning mechanism 

(Nuzzolo et al., 2012). In the latter case, travellers 

consider on day t the anticipated attribute values of 

path cost components, which are a weighted average 

of experienced and anticipated attribute values on 

day t-1 ï thus, the path choice model is recurrently 

updated based on usersô expectations and their prior 

experience: 

The extent to which the overcrowding experience 

impacts the passengersô choices will differ 

profoundly, depending on the trip purpose 

(motivation). Literature sources (Tirachini et al., 

2013) and empirical surveys alike (London 

Assembly Report, 2009a) confirm that crowding 

discomfort is of limited significance for commuter 

(obligatory) journeys but might have substantial 

implications for leisure (non-obligatory) journeys. 

In former case, the necessity to arrive at destination 

on-time means that commuter travellers still assign 

much higher (relative) weight to travel times than 

on-board conditions, or as given by a cited London 

commuter (London Assembly Report, 2009b): ñYou 

just have to use the Tube. Thereôs just no choice, 

there is no option. Well, there is an option: just donôt 

go to work but thatôs not really an option!ò. The 

same report examines the ways in which commuters 

adapt to the frequently experienced travel 

conditions: around 66% of London rail commuters 

adjusted their departure times (e.g. chose earlier 

connections), and for one of the rail services ca. 20% 

of travellers would travel in the opposite direction 

first, just to have a higher chance of getting a seat at 

an upstream station. On the other hand, crowding 

seems to have much more suppressive impact on the 

non-obligatory trip motivations. The majority of 

leisure travellers do avoid travelling on London 

Underground during rush hours, and 25% of them 

change the time of travel during the day due to 

anticipated crowding. Additionally, 

sociodemographic factors themselves might be 

relevant as well: (Kim et al., 2009) indicate that 

specific user groups expose different ñsensitivityò 

rates to crowding ï e.g. elderly people are likely to 

sacrifice the extra travel time in favour of more 

comfortable trip conditions. 

 

3. Appraisal of public transport capacity ï 

sample case studies 

Incorporation of passenger overcrowding effects on 

public transport system has been shown in a number 

of (both academic and practical) case studies to 

influence the overall projected network usage, 

performance results and assessment indicators ï 

yielding distinct results when compared to the 

analysis ñinsensitiveò to overcrowding phenomena. 

(Batarce et al., 2015) point out interestingly that 

(passenger) congestion in public transport plays an 

analogous role to (traffic) congestion in private 

transport (Fig. 5): investment in public transport 

systems increase both their transportation capacity 

and relative attractiveness, which spurs passenger 

demand growth. However, in longer run this induces 



AoT Vol. 43/Issue 3 2017 
 

 

15 

increase in travelling discomfort due to arising 

crowding, and the (finite) capacity of public 

transport supply itself may eventually become 

outstripped by the ever increasing passenger 

demand. In the end, this implies that further 

improvements in public transport systems are 

necessary - the ramifications of this feedback 

correlation may only be captured if public transport 

capacity constraints are taken into account; 

neglecting it would produce erroneous results in 

terms of public transport system effectiveness and 

capability. 

Both implicit and explicit approaches to modelling 

the capacity constraints have been utilised in sample 

case studies to demonstrate the arising differences in 

public transport assignment output between 

congested vs. uncongested cases. In a recent case 

study for The Hague city (van Oort et al., 2015), an 

implicit, VDF-based approach revealed differences 

in passenger flowsô distribution between the 

proposed tram line and the existing bus route along 

the same transport corridor (Fig. 6). A two-tier 

crowding mark-up penalty was assigned to the path 

cost formula, which reflected first an increasing 

discomfort penalty due to rising on-board crowding 

(within the range of 1.0 ï 1.7), and after reaching the 

assumed crush capacity it surged rapidly up to the 

constant value of 10.0. The method revealed a higher 

patronage rate of the tramway system ï the 

passenger gains could be attributed both to its higher 

nominal capacity limit as well as  better on-board 

comfort level, when compared to the existing bus 

system. Importantly, a reduction in service 

frequency need not necessarily imply a decline in 

passenger numbers, as envisaged by uncongested 

model. Inclusion of another principal factor ï i.e. 

increasing service capacity (provided by tramway 

system) ï mitigated these losses and even projected 

a slightly higher demand flow along the proposed 

tram line.  

Another case study in the city of Stockholm (Cats et 

al., 2015) utilised a more specific, explicit approach 

with individually modelled vehicles and travellers 

(agents) to assess the projected performance of a 

new metro line proposed along an existing, busy bus 

corridor. 
 

 
Fig. 5. Public transport (PuT) congestion (overcrowding) - a long-term feedback impact which may not be 

captured with conventional assignment models (source: Batarce et al., 2015) 
 

 
Fig. 6. Sample results of including the capacity constraints' and comfort effects in the implicit approach ï 

estimated relative effect on daily ridership after conversion of bus line 25 to tram line in The Hague 

city (source: (van Oort et al., 2015))

model WITHOUT capacity constraints: - 3% model WITH  capacity constraints: + 3% 
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In the existing scenario, when the busy corridor is 

served by 200 buses per hour (per direction), ca. 

40% of buses are routinely overcrowded, and 

multiple denial-of-boarding events can be observed. 

In that case, the explicit approach captures the 

deteriorations in service quality and travel times, in 

the form of the bus bunching effect caused by (and 

correlated with) excessive demand flows ï i.e. the 

very principal ramifications of the mutual demand-

supply interactions. In contrast, a new metro line 

with much higher capacity would attract ca. 60% of 

bus users, and despite smaller service frequency it 

would still be less overcrowded and much more 

resilient to service disruptions. The absolute 

decrease in in-vehicle and waiting times is ca. 15%, 

but when weighted in relative (perceived) terms, the 

project would bring ca. 65% extra benefits, 

attributable to higher system capacity and reduced 

discomfort travel cost. In such case, a cost-benefit 

analysis based on uncongested static model would 

potentially miss a major share of gains coming from 

public transport system improvements.  

A study for the Swiss railway system (Lieberherr 

and Pritscher, 2012) developed an implicit, VDF-

based capacity restraint model, the so-called SBB 

crowding function (described in more detail in 

subsequent chapter), which has been now 

incorporated in the macroscopic PTV VISUM 

software. Application in pilot projects showed that 

the capacity-restraint assignment reduced the 

overestimation (overload) rate of railway system 

usage (measured in seat-km) by 30% - though the 

assignment model would still yield somewhat 

overestimated passenger flows, the obtained results 

would be more plausible. Additionally, the SBB 

crowding function revealed extra shifts from 

intercity to regional train services during 

overcrowded peak hours ï a minor share of 

travellers (ca. 3% of total O-D flow) would switch 

towards slower but less-crowded trains. 

Furthermore, researchers reckon that a more far-

reaching distinction between ñseatedò and 

ñstandingò crowding penalty itself might influence 

the assignment output. (Leurent, 2009) demonstrate 

that the predicted passenger load in Paris metro 

system is reduced by ca. 30%, when a congested 

model additionally distinguishes between the seated 

and standing crowding disutility. 

Additionally, researchers (Small, 1999) indicate that 

the benefits of improving the public transport system 

capacity may be not only quickly diminished (i.e. 

ñeaten-upò) by passenger influx from alternative 

routes (modes), but furthermore ï they might be 

actually partially (or even totally) undone by the 

phenomenon of latent (induced) demand (Szarata, 

2013). The city of London provides a good example 

in terms of that narrative, illustrating how massive 

investment programmes in transportation systems 

can barely keep up with the ever growing demand 

pressure. A multi-billion improvement programme 

currently underway across the London Tube 

(underground rail) system is projected to increase 

the system capacity by approx. 30%, but analysis 

prepared for the busiest Tube line, the Northern Line 

(Fig. 7), shows already that by the time the works 

have been finished - the crowding levels will be even 

worse than before, virtually along each single 

section of the line (Transport for London, 2013). A 

flagship Crossrail project (ca. Ã17bn of total cost) is 

supposed to contribute 10% to the total urban 

transport network capacity ï a substantial nominal 

gain in the city of 8m inhabitants - and become a 

core part of the public transport system. Though it is 

widely expected to relieve the existing Tube 

network, transport planners predict that once opened 

in 2018 the Crossrail ñwill be immediately full up 

with peopleò (Drabicki., 2015), and argue that a 

second Crossrail line is badly ñneededò to counteract 

the anticipated passenger congestion. Numerous 

similar case studies can be found elsewhere in 

biggest urban metropolitan areas across the world, in 

case of which the public transport systems are 

particularly likely to become prone to massive 

passenger congestion and induced demand pressure. 

As mentioned earlier, impact of overcrowding on 

long-term passenger path choices also concerns the 

modal choices and departure time choices. 

(Tirachini et al., 2013) use stated-preference 

passenger survey data, and propose a range of MNL 

models to estimate demand choice models arising 

from inclusion of crowding discomfort in travel cost 

formula (Fig. 8). This Sydney-based study 

emphasises that models insensitive to crowding 

discomfort are likely to underestimate the value of 

in-vehicle travel times savings and overestimate the 

demand (model) share for high congestion levels 

(and vice versa for low congestion levels). An 

important observation is that for suburban railway 

trips, the inclusion of repeated overcrowding 

experience should produce a demand shift towards 
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private transport, with crowding ñsensitivityò rate 

increasing as a function of trip duration: an 

uncongested model would yield a constant modal 

share of a sample rail line at ca. 5%, whereas for a 

congested model the modal share would range 

between 4 ï 6% (travel time of 15 minutes) or ca. 3 

ï 8% (travel time of 40 minutes). In terms of 

departure time updating process, (Nuzzolo et al., 

2012) incorporate a day-to-day learning mechanism 

in public transport assignment model, so as to 

emphasise the long-term implications of crowding 

experience. The proposed framework shows that 

approx. 65% of commuters shift towards other 

(earlier or later) vehicle runs to mitigate the risk of 

on-board congestion, leaving on average 5 minutes 

earlier at the origin ï a ñspillbackò effect can be 

observed in temporal demand distribution pattern: 

individual vehicle run loads might now substantially 

differ from their initial values once a congestion-

induced adjustment takes place in passengersô 

choice process.

 

 
Fig. 7. Sample results for the London Underground case study: despite massive investment programme 

(NLU), capacity increases on the Northern Line will be quickly absorbed by induced passenger 

demand growth (source: Transport for London, 2013) 

 

  
Fig. 8. Sample results obtained with different crowding cost functions ï correlation between the overcrowding 

(discomfort) impact and the modal share of commuter rail system (source: Tirachini et al., 2013) 
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4. Assignment algorithms 

In the practical part of this study, two public 

transport assignment algorithms will be tested on a 

sample transport network, to observe how they 

replicate the effects of passenger overcrowding on 

the evolving transport system performance and 

travelling experience (mainly in terms of journey 

times and service loads). Each algorithm utilises a 

distinct approach to modelling the capacity 

constraints of public transport systems, and assumes 

a different modelling aggregation level both on 

demand and supply sides, i.e.: 

- implicit approach: timetable-based (i.e. 

schedule-based), macroscopic assignment model ï 

as implemented in the commonly-used PTV 

VISUM software, 

- explicit approach: simulation-based (i.e. agent-

based), mesoscopic assignment model ï as 

incorporated in the currently developed BusMezzo 

software. 

 

4.1. Implicit capacity constraintsô algorithm 

The timetable-based assignment model operates on 

a macroscopic level, reproducing travel demand in 

form of aggregated link flows (within a certain time 

period). The path choice model is a one-off process 

triggered at the origin, when traveller chooses a 

complete O-D path (route), based on its 

(predetermined) utility value ï and follows that 

single path all the way to his (her) destination. The 

baseline path utility formula is a sum of weighted 

(perceived) travel time components (in-vehicle, 

waiting, walking times), transfer penalties, and the 

temporal utility of that O-D connection. 

Additionally, once a capacity restraint model is 

introduced, a crowding mark-up penalty (1 +Av) is 

assigned to the total path utility. The crowding 

penalty is recalculated in an iterative process, based 

on the volume-to-capacity ratio of each link segment 

(importantly ï not individual line segments), until a 

certain convergence (equilibrium) threshold is 

attained ï i.e. a fixed-point problem solution after 

which a final path utility (impedance) rate is 

evaluated. The algorithm utilises a VDF-based 

procedure analogous to the private transport 

congested assignment model, with 3 crowding 

impedance functions available. For the purposes of 

this study, the SBB (Swiss Railway) function was 

assumed as it should allow us to replicate the two-

tier effect of rising network overcrowding upon the 

path utility (impedance): for low volume-to-capacity 

rates, the effects of rising passenger discomfort 

(crowding mark-up penalty within range of 1.0 ï 

1.7), and a step-wise jump in path impedance 

(constant crowding mark-up penalty of 10.0) once 

passenger volume exceeds the assumed crush 

capacity (Fig. 9). This algorithm should reproduce, 

in a simplified ï i.e. implicit ï approach, the effects 

of capacity constraints on output passenger path 

choices: reductions in excessive (overestimated) 

passenger volumes and increasing attractiveness of 

less-crowded routes ï though without considering 

the more specific, congestion-associated 

phenomena, particularly at the stops. 

 

4.2. Explicit capacity constraintsô algorithm 

The simulation-based assignment model assumes a 

more disaggregate representation both of transport 

demand ï individual agents (travellers), and 

transport supply ï individual vehicles (trips) 

operating within the network. Here, the path utility 

is recurrently updated at each journey stage, when 

traveller may reconsider his (her) path (route) choice 

towards the destination ï i.e. at each instance a 

boarding, alighting or connection decision process is 

triggered.  
 

  
Fig. 9. Implicit capacity constraints' algorithm assumptions in simulations 
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Likewise, the path utility formula comprises the 

same set of travel time components plus transfer 

penalties, except for temporal utility of connection 

which was not yet included in the algorithm. Since 

the modelling algorithm operates on a more detailed, 

mesoscopic level, resultant passenger flows are an 

aggregate output of all the individual actions (path 

choice decisions) taken by agents (travellers) 

progressing through the network. Service supply is 

modelled as individual trips (runs) served by public 

transport vehicles, which are described with their 

distinguished properties - vehicle type, vehicle 

dynamics, and importantly ï specified maximum 

passenger load capacity. Network performance is 

reproduced in a more stochastic manner ï the actual 

travel times depend on real-time system conditions, 

and a dwell-time function is introduced to describe 

the direct impact of dwelling (i.e. boarding and 

alighting) flows onto dwell times ï in our case, we 

will assume a linear dwell-time function of 2 

secs/pass. The utilised modelling framework did not 

incorporate yet the impact of crowding discomfort 

upon the path cost-utility formula; nonetheless, it 

would allow us to observe the actual transport 

network performance and its implications for 

passengersô travelling experience once network 

capacity constraints are modelled in an explicit 

approach ï i.e. with strict denial-of-boarding and 

arising queuing phenomena occurring at stops if 

passenger flows exceed the system capacity, and the 

very important demand-supply interactions (Fig. 

10). 

 

5. Results ï implicit and explicit approaches 

Simulations presented below were performed on a 

sample public transport network, i.e. the extended 

version (ñSF ENetò (Fonzone and Schmoecker, 

2014)) of the classical Spiess-Florian network 

(Spiess and Florian, 1989). The extended SF ENet 

layout is assumed on a network topology formulated 

by (Fonzone, Schmoecker 2015) and comprises a 

system of 7 bus stops (A to G) and 5 unidirectional 

bus lines (L1 to L5), situated along 2 parallel O-D 

routes (Fig. 11). A single origin-destination pair is 

assigned to the network. Travellers are allowed to 

transfer between bus lines at stops, and additionally 

a two-way, 3-minute walking connection is provided 

between the intermediate stops C and F. Vehicle 

runs are dispatched from origin stops at fixed 

intervals (headways), and line run times between 

consecutive stops remain constant. The crush 

capacity rate of each bus vehicle is assumed as 100 

pax.; in explicit approach, a dwell-time function is 

introduced with a linear rate of 2 secs/pass. 

To analyse the incorporation of passenger 

overcrowding effects in the sample network, 2 

distinct modelling approaches were included, i.e. the 

implicit approach (PTV VISUM) and the explicit 

approach (BusMezzo) to modelling the capacity 

constraints. 

 

 
Fig. 10. Explicit capacity constraints' algorithm assumptions in simulations 
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For both of these, 4 individual O-D demand cases 

were assigned which should reflect the rising O-D 

demand conditions in the following stages: 

- undersaturated conditions (1600 pax./hour ï 

ñLOWò congestion case), 

- saturated network state (3200 pax./hour ï ñMIDò 

congestion case), 

- moderately and massively overcrowded 

conditions (6400 pax./hour ï ñHIGHò congestion 

case, and 16000 pax./hour ï ñV. HIGHò 

congestion case). 

These respective O-D demand values correspond 

roughly to 50%, 100%, 200% and 500% of 

generated line capacity (per hour) combined for 

initial 3 line segments (L1, L2 and L5) departing 

from the origin. Total simulation run time is 120 

minutes: service supply is generated during the 

whole 120 minutes, whereas passenger demand is 

assigned after initial 30 minutes and is generated 

within the next 60 minutes. 

Simulations performed on a sample network reveal 

that both modelling approaches produce different 

assignment output as a consequence of rising O-D 

passenger volumes, with respect to each individual 

(described above) category of passenger 

overcrowding effects. Starting with the inclusion of 

physical capacity limits, the implicit approach has 

relatively more limited impact on output network 

performance: in aggregate terms, average journey 

times increase from 21.7 mins (ñLOWò congestion 

case) to just 24.3 mins (ñV. HIGHò congestion case) 

(Fig. 12). These changes in journey times are pretty 

much minimal and can be merely attributed to the 

relative shifts in O-D path choices (i.e. paths with 

longer in-vehicle travel times become somewhat 

more attractive), but they do not reflect any changes 

in waiting times - which remain virtually constant 

(or even decrease slightly) in the event of massive 

passenger congestion. This stands in stark contrast 

to the explicit constraintsô algorithm which reveals 

much more significant changes in travel times: as a 

consequence of rising passenger congestion, 

average journey times increase from 31.4 mins 

(ñLOWò congestion case) to 63.7 mins (ñV. HIGHò 

congestion case). Here, the average in-vehicle travel 

times remain constant, but a significant surge in 

waiting times takes place now due to congestion-

induced queuing phenomena at stops, which are 

evidently captured by the explicit algorithm: as O-D 

demand volume exceeds the system capacity, a 

rising share of passengers is denied the boarding and 

becomes increasingly delayed as they try to reach 

the destination.

 

 
Fig. 11. Spiess-Florian extended network (SF ENet) -topology of sample bus transport network used in 

simulation works (source: Fonzone and Schmoecker, 2015). 
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Fig. 12. Simulation results ï substantial differences in mean journey times between the explicit and implicit 

algorithms 

 

In the implicit approach, the effects of arising 

congestion are described by the travel cost penalty 

imposed by the SBB function: it reflects the 

travellersô willingness to shift towards less-crowded 

connections, but does not account for strict denial-

of-boarding: in the end, 100% of travellers will 

reach the destination successfully and the whole O-

D demand volume would be redistributed within the 

whole 2-hour simulation period to earlier or later 

departures, even if it implies volume-to-capacity 

ratio values reaching up to 500% on individual line 

segments (Fig. 13).  

 

 

 

Fig. 13. Results ï differences in origin segments' (L1, L2 and L5) Vol/Cap ratios - plotted against the 

generated line capacity threshold 
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In contrast, in the explicit approach a strict denial-

of-boarding principle is observed for every 

additional passenger beyond the capacity limit: 

volume-to-capacity ratio will never exceed 100%, 

and travellers would have to wait for the ensuing 

service runs which will have spare on-board 

capacity. Consequently, the probability-of-arrival at 

the destination decreases sharply as overcrowding 

develops in the SF ENet: for ñHIGHò and ñV. 

HIGHò congestion cases, 46% and 71% of travellers 

respectively will not make it to the destination after 

120 minutes of simulation run time, and will still 

remain stranded somewhere in the network (Fig. 

14).  

 

 
Fig. 14. Results - rising failure-to-arrive probability 

at the destination in the explicit approach, 

as a consequence of increasing network 

congestion 

 

An important remark regarding the mesoscopic-

based (explicit) algorithm performance should be 

made here, which is related to distinct assumptions 

utilised in the probabilistic discrete choice 

algorithm. Each time (i.e. at each instance) the 

traveller makes a travel decision, each alternative he 

(she) considers in the O-D choice set is described 

with a non-zero probability ï thus, he (she) will most 

likely ï but not necessarily ï choose the O-D 

alternative with the highest utility value. Simulation 

works assumed a default MNL theta parameter 

value of 0.50 ï which should be in practice properly 

calibrated (i.e. most likely, increased) to match the 

expected probability rate of rational choice 

behaviour. This comprises a significantly distinct 

feature of mesoscopic-based algorithm assumptions 

ï and therefore, the exact travel time values should 

not be interpreted in absolute terms (e.g. in 

comparison to macroscopic-based algorithm) but 

rather used to observe relative changes as a 

consequence of system overcrowding. This is also 

the reason behind a non-zero failure-to-arrive 

probability rate (at the destination) even in low 

congestion scenarios; in higher congestion levels, 

the additional rises in this probability rate can be 

directly attributed to the implications of 

overcrowding-induced phenomena. 

A major difference in the assignment output 

concerns the replication of demand-supply 

interactions, i.e. the feedback effect between 

passenger congestion and service performance. This 

cannot be captured within the implicit approach, 

where both service run times and dwell times remain 

unaffected despite the passenger overcrowding ï 

regardless of all the simulation cases. However, it is 

of utmost importance in case of explicit approach, 

where mutual dynamic developments on-going in 

the congested network have profound implications 

both on the demand (passengersô) and the supply 

(servicesô) side. A significant growth in dwell times 

can be evidently observed for individual vehicle 

runs as passenger boarding and alighting flows 

increase at the stops, which result in up to 50% 

longer total run times of bus trips in the SF ENet. 

The demand-supply feedback loop is perhaps best 

demonstrated when plotting dwelling flows against 

service headways for consecutive vehicle runs (Fig. 

15): it shows that service headways are likely to 

deviate from their nominal values when fluctuations 

in dwelling flows grow higher. Importantly, the 

biggest headway deviation values are correlated not 

with the extreme demand magnitude - but 

principally with the extreme demand variance: the 

biggest ñbumpsò in line headways tend to overlap 

with the highest ñbumpsò in dwelling flows. This is 

a characteristic feature of the on-going bus bunching 

effect (described above), which in highly 

overcrowded simulation cases (ñHIGHò and ñV. 

HIGHò cases) becomes a self-sustaining 

phenomenon, reflecting that the network 

performance falls out of stability state - and will only 

diminish in the final 30 minutes of simulation period 

once O-D demand generation ceases and the SF 

ENet finally ñrecoversò from massive congestion. 
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Fig. 15. Results - mutual demand-supply interactions captured in the explicit approach: sample effects on 

service run times (top) ï up to 50% longer service times, and headway deviations (bottom), induced 

by passenger flows 

 

The differences in the observable assignment output 

can be attributed to the assumed aggregation level 

within the simulation algorithm. The implicit 

approach operates on a macroscopic level, where 

transport demand and transport supply systems can 

only be traced in terms of aggregate flows and link 

segments for the whole assignment period: a more 

exact examination of service run timesô or journey 

timesô distribution is not possible within the scope 

of this algorithm, and output network performance 

is principally measurable with average (aggregate) 

indicator rates. The explicit approach assumes a 

more disaggregate representation both on the 

demand as well as the supply side, and thus enables 

to observe much more detailed output for each 

individual component of the transport system ï i.e. 

journey times of individual travellers, and service 

run times of individual vehicle runs. This allows us 

to reproduce an interesting passenger arrival pattern 

at the destination, which also mimics the demand-

supply feedback interaction: for higher congestion 

cases, the rising bus bunching effect eventually 

induces a ñpassenger bunchingò pattern, with O-

D demand arrivals becoming more concentrated 

(ñbunchedò) due to system capacity bottlenecks 

(Fig. 16). 

Finally, distribution of path choice patterns also 

exposes substantial differences between the two 

assignment algorithms, as seen on the example of 

path choice shares between 3 line segments at the 

origin (L1, L2 and L5) (Fig. 17). In the implicit 

approach, the path choice formula reflects the 

discomfort cost penalty already for low and 

moderate crowding conditions. Thus, a substantial 

shift can be observed when congestion rises from the 

ñLOWò to the ñMIDò case: the O-D demand 

becomes pretty much equally distributed between 

the 3 segments, and for each of them the volume-to-

capacity ratio stabilises between 46% to 52%.  



Arkadiusz Drabicki, Rafağ Kucharski, Andrzej Szarata 

Modelling the public transport capacity constraintsô impact on passenger path choices é 

 

24 

 

 
Fig. 16. Results - implications of demand-supply feedback in the explicit approach: fluctuations in service 

performance (bus bunching) eventually influence the overall pass. arrival ("pass. bunching") pattern 

at the destination. 

 

 

 

Fig. 17 Results - arising differences in path choice at the origin between the implicit (top) and explicit 

(bottom) approaches 

 

However, for further (ñHIGHò and ñV. HIGHò) 

congestion cases no consistent path choice pattern 

can be derived or explained: the O-D demand shares 

alternately jump up or drop down, suggesting that 

the network output could not reach a stable 

(equilibrium) solution - the small-scale SF ENet 

with its simple topology becomes simply a few times 

more overloaded than its generated capacity rate. In 

the explicit approach, no discomfort cost penalty 

was included in the path cost formula yet, and the 


